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Abstract 
 

This paper provides practical guidance for researchers who are designing and analyzing studies that randomize 

schools — which comprise three levels of clustering (students in classrooms in schools) — to measure 

intervention effects on student academic outcomes when information on the middle level (classrooms) is 

missing. This situation arises frequently in practice because many available data sets identify the schools that 

students attend but not the classrooms in which they are taught. Do studies conducted under these 

circumstances yield results that are substantially different from what they would have been if this information 

had been available? The paper first considers this problem in the context of planning a school randomized study 

based on preexisting two-level information about how academic outcomes for students vary across schools and 

across students within schools (but not across classrooms in schools). The paper next considers this issue in the 

context of estimating intervention effects from school-randomized studies. Findings are based on empirical 

analyses of four multisite data sets using academic outcomes for students within classrooms within schools. The 

results indicate that in almost all situations one will obtain nearly identical results whether or not the classroom 

or middle level is omitted when designing or analyzing studies. 
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Introduction 

What are the implications of planning and analyzing a study that randomizes groups comprised 

of three levels of variation, without explicitly accounting for the middle level? For example, what if one 

randomized schools but planned the study and analyzed the resulting data without explicitly accounting 

for the clustering of students within classrooms?  

 This problem often occurs at the planning stage of studies that randomize schools because little 

is known about the three-level variance structure of outcome measures for students clustered in 

classrooms in schools. Most of the published empirical basis for planning such studies instead comprises 

information for the two-level variance structure of students clustered in schools (see, for example, 

Bloom, Richburg-Hayes, and Black, 2007; Hedges and Hedberg, 2007). Thus research designs based on 

this information do not account explicitly for the clustering of students in classrooms. 

 The problem also occurs at the analysis stage of studies that randomize schools because 

researchers often use administrative records to measure student outcomes.  Since these records 

typically do not identify which students are in which classrooms—and adding such identifiers is difficult 

or costly, if not impossible to do—the resulting studies are analyzed using two-level models that do not 

account explicitly for the clustering of students within classrooms.  

Previous researchers have considered the implications of ignoring a level of variance when 

analyzing data with a multilevel structure.  Specifically, they have shown that if a middle-level of a multi-

level variance structure is ignored, part of it will shift up one level and the rest will shift down one level, 

thereby increasing estimates of the variances at these adjacent levels. In this way, the middle-level 

variance is to some extent accounted for implicitly (Opdenakker and Van Damme, 2000; Moerbeek, 

2004; Tranmer and Steele, 2001; Van den Noortgate, Opdenakker and Onghena, 2005).    

Researchers also have tested (using simulated and actual data) the implications that such 

omissions can have for the interpretation of multiple regression analyses. They have demonstrated, for 
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example, that in many situations ignoring a level of variance will result in standard errors that are 

misspecified and thereby produce incorrect statistical inferences. For example, omitting the classroom 

level in a sample that has students clustered in classrooms within schools will produce incorrect 

estimates of standard errors for student-level independent variables (Opdenakker and Van Damme, 

2000; Moerbeck, 2004; Van den Noortgate, Opdenakker and Onghena, 2005).   

These studies provide a general overview of what happens to both the standard errors and point 

estimates of predictors included at all levels of a hierarchical model, when various levels are ignored.  

However, as Van Landeghem, De Fraine and Van Damme (2005) note, the findings from these studies 

often do not apply to situations that researchers commonly face in practice. For example, many of the 

results are based on the assumption that the size and internal structure of every randomized cluster is 

the same and that no covariates are included in the analysis.  This is rarely the case in practice. Similarly, 

these results are usually quite general and depend on factors like the particular level of a multilevel 

variance structure that is ignored, the level of the predictor variable of interest, and the relative 

magnitudes of the variance components involved.  The overarching conclusion of these papers is that 

omitting a level from a multilevel analysis can be problematic, but it is difficult to determine  the 

practical implications of doing so for any given potential research application.  Furthermore, these 

studies focus primarily on the implications of this approach for analyzing data when a level of variance is 

not explicitly acknowledged and little attention is paid to the implications of missing a level of variance 

for the minimum detectable effects obtained during power analyses for planning studies. Consequently, 

there is little practical guidance for researchers who are interested in the design and analysis of school- 

randomized studies when information about the classroom is not available. 

This paper fills that gap by exploring the consequences of ignoring classroom-level information 

when designing or analyzing a school-randomized trial.  It extends previous findings by investigating not 

only the implications of not acknowledging the middle level for analyzing data, but also by investigating 
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its implication for planning studies with a three level data structure using only the top and bottom levels 

of information. The paper also provides concrete guidance to education researchers who are designing 

and analyzing data from school-level random assignment studies in which the cluster size and structure 

varies and covariates are used for analysis.  Finally, the paper extends the findings to cases in which the 

sample used to plan an impact study has a different cluster structure (that is, a different number of 

students per classroom and classrooms per school) than the structure of the analytical sample of the 

impact study itself.  These extensions are based on empirical analyses of four multisite data sets- that 

use academic outcomes for students within classrooms within schools. 

The resulting findings indicate that no substantial problem is likely to arise from using two-level 

models (for students within schools) to design or analyze studies that randomize schools. This 

conclusion holds for both elementary school data (where the middle-level variance component tends to 

be small) and secondary school data (where the middle-level variance component tends to be large), for 

data sets with varying numbers of students per classroom and classrooms per school, in situations 

where covariates are included at either the student or the school level, and in situations where the 

cluster structure of the study being planned differs substantially from the one used for planning 

purposes.    

The rest of the paper is structured as follows.  It begins by presenting a theoretical framework 

for comparing three- and two- level models of a three-level situation.  The paper then presents 

estimates of three-level and two-level variance components and examines how an ignored classroom-

level variance component is shifted up to the school level and down to the student level.  The authors 

compare the shifting in their data with what is predicted theoretically and find the size of the actual and 

predicted shifts to be consistent with each other.  These findings are then used to consider the 

implications of a two-level analysis of minimum detectable effect sizes (MDES) for a study that 

randomizes schools.   These implications are explored for models that do and do not use covariates to 
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estimate MDES. The paper also explores the implications of planning a study that has a different 

underlying data structure than the one used for planning purposes.  The paper next explores the 

implications of ignoring the middle level when analyzing data with a three-level structure using a two-

level model and it ends by offering some conclusions and recommendations.  

 

Theoretical Framework 

 Consider the following two alternative research designs for estimating the impacts of an 

educational intervention on student outcomes from a study that randomizes schools in a large urban 

district.  Both designs will estimate impacts by the observed differences in mean student outcomes for 

the randomized treatment group and control group, and the true variance structure for the study’s 

sample will comprise three levels: students, classrooms and schools. Note that in this discussion 

classroom-level influences are considered to be random. This is consistent with the convention of 

treating class-level differences as random in the literature, and recognizes the random factors affecting 

variation at the classroom level (for example, class dynamics can shift randomly across days depending 

on various factors, including  particular students who are present or absent that day), We do recognize 

that there also might be fixed components at work here.   For example, students are not always 

randomly assigned to teachers.  

 Design A uses a statistical model that specifies all three levels of the true variance structure. The 

school-level variance equals 𝜏𝐴2, which is the variance of mean outcomes across schools within the 

district. The classroom-level variance equals  𝛾𝐴2 , which is the variance of classroom means within 

schools. The student-level variance equals 𝜎𝐴2, which is the variance of student scores within classrooms. 

The total student variance equals the sum of these three variance components (𝜏𝐴2 + 𝛾𝐴2 + 𝜎𝐴2).   

 Design B uses a two-level statistical model that specifies two variance components, one for 

mean values of the outcome measure across schools, 𝜏𝐵2 , another for individual student outcomes 
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within schools, 𝜎𝐵2. These two variances sum to the total student variance, which is the same as that for 

the three-level model but is decomposed differently.  Because the clustering of students within 

classrooms is ignored, student outcomes are assumed to vary independently of each other within 

schools, which is an oversimplification.  

The following expressions can be used to compute a minimum detectable effect size for student 

outcomes given designs A and B, without covariates or blocking. Note that throughout this paper, 

minimum detectable effect sizes are defined for a two-tail hypothesis test at the 0.05 level of statistical 

significance with 80 percent statistical power (for a discussion of how this is done see Bloom, 2005). 

Design A 

   (1) 

 where 

  MDESA = the minimum detectable effect size for design A 

  MJ-2 = a multiplier for J-2 degrees of freedom that equals approximately               

  2.8 for studies that randomize 20 or more schools;1  

     P = the proportion of schools randomized to treatment 

  J = the total number of schools randomized to treatment or control status 

  K = the harmonic mean number of classrooms per school 

  NA= the harmonic mean number of students per classroom  

Design B 

     (2) 

 Where, in addition: 

  NB = the harmonic mean number of students per school 

222

222
2 1*

)1(
AAA

A

AAAJ
A

JKNJKJPP
MMDES

σγτ
σγτ

++
++

−
=

−

22

22
2 1*

)1(
BB

B

BBJ
B

JNJPP
MMDES

στ
στ

+
+

−
=

−



 

6 
 

These two expressions are the same with respect to the multiplier (MJ-2), which converts standard errors 

of estimates to minimum detectable effects (see Bloom, 2005 for a discussion). The two expressions are 

also the same with respect to the proportional allocation of randomized groups to treatment status (P) 

and control status (1-P). However they differ with respect to the square root of the sum of variance 

contributions from the different levels of each statistical model. 

 The central question to address when comparing these two expressions is: How do their 

estimated values compare when the total student variance is decomposed into all three components 

(for schools, classrooms, and students) as in Equation 1 to when the total student variance is 

decomposed only into components for schools and for students within schools (as in Equation 2)?  

 To understand this question first recall that both models start with the same total variance in 

the outcome measure across all students from all classrooms in all schools. Hence, the sum of the three 

variances under model A equals the sum of the two variances under model B or: 

          (3) 

Variance estimatesfor model B must thus shift the true middle level variance to the bottom level, the 

top level or both levels.  

 Moerbeek (2004, Equation 14) derives the following expressions to represent this shifting when 

there is a constant number of classrooms per school (K) and students per classroom (𝑁𝐴). 

       (4) 
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 the expected value of 
 

 

Equations 4 and 5 indicate that a predictable portion of the true classroom-level variance is 

shifted to the estimated school-level variance, and the remainder is shifted to the estimated student-

level variance. The sum of these two increments equals the total classroom variance.  

Intuitively, it is easy to see how part of the true classroom-level variance shifts down to the 

estimated student-level variance. This occurs because part of the observed variance in outcomes across 

students within schools reflects classroom differences. Thus when  the variation across students within 

schools is measured and when cross-classroom differences are ignored, a part of these differences is 

included in the measure of student-level variance within schools, . Consequently the estimated 

student-level variance within schools for the two-level model  exceeds that for the estimated 

student-level variance within classroom in the corresponding three-level model, . 

 It is less readily apparent how the two-level estimation model B attributes some of the cross-

classroom variance to the estimated variance across schools. This occurs because the total observed 

variance in school sample means can be decomposed into two parts: one that is due to true variation 

across schools and one that is due to estimation error produced by within-school student variation.  

Model B assumes that outcomes vary independently across students within schools when in fact they 

are clustered by classroom. By ignoring the clustering of students within classrooms, the two-level 

model B understates the contribution of student-level variation to the total observed variance of school 

sample means. Hence it overstates the amount of true variation that exists across schools.  

Equation 4 indicates that more of the classroom-level variance is shifted to the estimated 

school-level variance as students per school (NAK) are clustered into fewer classrooms (K). This shift 
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reflects how the clustering of students within classrooms inflates the true variability of within-school 

outcomes. Ignoring this clustering thus causes a larger understatement of within-school variability of 

outcomes when there are fewer classroom clusters, which, in turn, causes one to overstate the 

between-school variance accordingly.  Consequently, the two-level model overestimates the true 

school-level variance. This is why the estimated school-level variance for the two-level model exceeds 

that for the three-level model. 

  Because the classroom variance that is ignored by a two-level model is reflected in estimates of 

school and student variances, the classroom variance is not missing from a two-level analysis. Indeed, as 

has been shown by others (Moerbeek, 2004, Van den Noortgate, Opdenakker, and Onghena, 2005) 

theoretically, using a two-level model to estimate the cross-level variance components to be used in the 

calculation of the minimum detectable effect for a group-randomized research design can  under certain 

circumstances produce the same results as those produced by a three-level model.  It is easy to show 

that substituting Equations 4 and 5 into Equation 2 makes Equation 2 equivalent to Equation 1. As 

noted, however, these theoretical conclusions assume that every school has the same number of 

classrooms per school and students per classroom, that data used for planning a study reflect the 

number of classrooms per school and students per classroom that will be included in the actual study 

sample, and that no covariates will be used for the study’s analysis. To extend these theoretical findings 

to situations that occur in practice, the remainder of this paper explores empirically what happens when 

the middle level of a three-level model is excluded from analyses, using three-level student outcome 

data from four major sources. 

 

The Data 

 Data from four different sources are used for the present empirical analysis.  They are the 

School Breakfast Pilot Project (Abt Associates Inc, and Promar International, 2005),  the federal Reading 



 

9 
 

First Impact Study (Gamse, Bloom, Kemple, and Jacob, 2008) and statewide administrative-records data 

on standardized test scores for individual students in multiple subjects from Florida and from North 

Carolina. Tables 1 and 2 describe the size, structure and variability of the analysis samples for each data 

source. As can be seen, these  samples provide an unusually large, diverse, and comprehensive empirical 

basis of analysis. 

 Table 1 reports the numbers of districts represented by these data plus the harmonic mean 

numbers of schools per district, classrooms per school and students per classroom in the sample. Of 

particular importance is the fact that the internal cluster structure of schools in the sample (that is, their 

number of classrooms and students per classroom) varies widely across the four data sources. Because, 

as demonstrated by Equations 4 and 5, this internal cluster determines how the classroom-level 

variance is shifted upward (to the school level) and downward (to the student level) when the middle 

level is ignored, it is important to represent a wide range of cluster structures in the analysis. 

 Table 2 describes the variability within the sample from each data source in its number of 

schools per district, number of classrooms per school, and number of students per classroom. This 

variability is measured by the standard deviation of each parameter. Of particular importance is the 

substantial variability that exists in the internal cluster structure of schools (their numbers of classrooms 

and students per classroom). This variability is what enables this paper to extend past theoretical work 

in ways that provide practical guidance for designing and analyzing educational evaluations (recall that 

existing theoretical findings assume no such variability). 

The School Breakfast Pilot Project (SBPP) was a three year demonstration (2000-03) that used a 

matched-pair random-assignment design to randomly assign schools within six districts to a treatment 

condition in which schools implemented a universal free school-breakfast program or to a control 

condition in which schools continued to operate their regular subsidized breakfast programs for eligible 

students from low-income families. The goal of the project was to measure the added value of universal 
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free school breakfasts. The two outcome measures used from the SBPP for the analysis presented in this 

paper are the Stanford 9 Total Math Scale Score (math achievement test scores in scaled-score points) 

and the Stanford 9 Total Reading Scale Score (reading achievement test scores in scaled-score points). 

The present SBPP analysis sample contains 1,151 third-graders from 233 classrooms in 111 

schools from six districts.  On average there are approximately 3.7 students per classroom and two 

classrooms per school.  The number of schools per district varies from around six to eight depending on 

the outcome measure (see Table 1).    The cluster structure of the SBPP sample is relatively constant by 

design because the original study sampled a fixed number of classrooms per school and students per 

classrooms. Hence, this sample has the smallest standard deviations for these parameters (see Table 2). 

 The Reading First Impact Study was a three year (2004-07) congressionally-mandated 

evaluation of the federal government’s Reading First initiative to help all children read at or above grade 

level by the end of third grade (Gamse, Bloom, Kemple, and Jacob, 2008). The study used a regression 

discontinuity design that capitalized on the systematic process used by some districts to allocate their 

Reading First funds to schools. The study was designed to measure the effects of the program on 

teacher practices and student achievement. Seventeen districts plus one state program were chosen for 

the study, and its original sample included 248 schools. Data for the present analysis are limited to 15 

sites (14 districts plus one state) and 225 schools for which it was possible to estimate student, 

classroom, and school-variance components. Reading First outcome measures used for the present 

analysis are SAT 10 reading scaled scores for all first, second and third-graders in the study’s schools 

during the spring of 2005.    

Even though the RFIS was a regression discontinuity analysis it was possible to use its data to 

explore the implications of these data for a research design that would have randomized the schools. 

This was accomplished by ignoring the rating variable used to allocate Reading First funds (which was 

the basis for the study’s regression discontinuity analysis) and estimating the natural variation in 
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academic outcomes that exists across schools, classrooms within schools, and students within 

classrooms. For similar reasons, the rating variable was ignored in the impact estimation models for the 

RFIS data. Therefore the impact estimates for RFIS reported in this paper are different from what was 

reported in the original RFIS reports.The RFIS sample for the analysis presented in this paper includes 

approximately ten schools per district, three classrooms per school and nine students per classroom. 

Unlike the SBPP, the RFIS was not designed to have a constant cluster size and structure. Instead all first- 

through third-grade students in regular education classrooms in the study’s schools were included in its 

original sample. Hence, there is more variability across RFIS schools in the number of students per 

classroom and classrooms per school than is the case for SBPP schools.  

Statewide data on test scores for individual students from Florida were obtained from the 

Florida Department of Education’s K-20 Education Data Warehouse (FL-EDW).  The FL-EDW is a 

longitudinal data system that includes records on all students, teachers and schools in the state.   Each 

year Florida students in the third through eleventh grades take the Florida Comprehensive Assessment 

(FCAT-SSS) in reading and math.   The analysis presented in this paper uses data on these test scores for 

grade five (representing elementary school) in math and in reading for school year 2005-06.  All scores 

are normalized by subject. Samples are limited to students with valid test scores in both the current year 

and the previous year. The analytic samples are further restricted to self-contained classrooms only. On 

average, this elementary school sample comprises approximately 17 students per class, four classrooms 

per school and six schools per district from a total of 43 districts.   

Statewide data on test scores for individual students from North Carolina were obtained from 

the North Carolina Education Research Data Center (NCERDC) for end-of-course assessments in reading 

and mathematics given to students in grades  three through eight in school year 2005-06.  The present 

analysis uses fifth-grade scores to represent scores for elementary schools. Similar to what has been 

done with the Florida data, the analysis keeps students with valid test scores in both the current and the 
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previous years and it keeps self-contained classrooms only. On average, the elementary school sample 

has about 16 students per classroom, three classrooms per school and five schools per district.  A total 

of 86 districts are included in the elementary-school sample. 

Scores are also available for North Carolina secondary school students’ end-of-course 

assessments in algebra II, biology, chemistry and geometry courses in school year 2005-06. This paper 

uses these scores to represent scores for secondary school.  These end-of-course tests allow 

straightforward assignment of students to classrooms. The disadvantage of having end-of-course tests, 

on the other hand, is that students take these tests only once and therefore no repeated measures of 

student performance in a particular subject are available. Thus, in order to control for pretest scores in 

the models that will be presented, students’ test scores on algebra I are used to approximate their 

starting levels. On average, the secondary school sample has approximately 15 to 20 students per 

classroom, three classrooms per school and three schools per district.  These data represent between six 

and 48 districts depending on the test subject.   

Because the Florida and North Carolina data are for entire states, they reflect substantial 

variation in the number of students per classroom and classrooms per school.  Hence, as can be seen 

from the standard deviations of the number of classrooms per school and the number of students per 

classroom reported in Table 2, the data exemplify schools with varying internal cluster structures. In 

order to investigate the impact of ignoring the middle level (the classroom level) in the context of 

estimating intervention effects, half of the schools in Florida and North Carolina were randomly assigned 

to a “treatment” group and the other half to a “control” group, such that the true “intervention effects” 

should be zero. This “quasi-” treatment status is used in the impact estimations discussed later in the 

paper. It is not, however, used in the variance component estimation since this randomly generated 

treatment status is not expected to affect the variance estimation. 
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Estimating Variance Components from Each Data Source  

 This section reports estimated variance components from each of the preceding data sources. 

Three-level variance components for design A were estimated using a three-level hierarchical linear 

model (student-class-school); two-level variance components for design B were estimated using a two-

level hierarchical linear model (student-school).  To reflect the typical range of common practices in 

education evaluation research, for each design,   these variance components were estimated separately 

for models without covariates and for models with school-level or student-level baseline test scores as a 

covariate. Models for the SBPP and RFIS samples include a zero/one indicator variable to distinguish 

between treatment schools and control schools. This was not necessary for the purpose of estimating 

variance components for the Florida and North Carolina samples because they do not actually comprise 

a specific set of treatment and control schools—the “treatment” and “control” status of the schools in 

these two samples are randomly generated to be used in the impact estimation and are not expected to 

have any effect on the variance component estimation. To ensure that all analyses are based solely on 

variation within school district ,zero/one indicator variables for each district are included in the model.  

This is equivalent to centering all variables on the mean values for their districts (see Wooldridge, 2002).   

Estimated Variance Components 

 Table 3 presents estimated variance components for all the outcomes in the data sets used in 

this paper.  The first three columns of Table 3 report estimated variance components for the three levels 

(school-class-student) of model A and the last two columns report estimated variance components for 

the two levels (school-student) of model B. Each estimated variance component is standardized and 

reported as a proportion of the total student-level variance for the sample that it represents. Values for 

the three variance components in model A sum to one and values for the two variance components in 

model B sum to one. Hence, the standardized variance components for schools and classrooms in these 

models represent intra-class correlations (that is, the proportion of total student variation that is at the 
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school and at the classroom level respectively). In addition, what is not shown in the table but was 

documented empirically is that, in all cases, the sum of the estimated nonstandardized three-level 

variance components equals the sum of the estimated nonstandardized two-level variance components 

(as noted by Equation 3). 

Note, that the estimated classroom variance for elementary schools is consistently a much 

smaller proportion of total student variation than it is for secondary schools.  For elementary schools 

this proportion is always below 0.140 and in most cases is well below this value.  In contrast, for 

secondary schools the proportion ranges from 0.293 to 0.376. 2 This striking difference probably reflects 

more extensive student tracking in secondary schools than in elementary schools.  

For SBPP Stanford 9 Math scores (represented by the first row in Table 3), the standardized 

variance for schools in the three-level analysis equals .085.  This means that 0.085 (or 8.5 percent) of the 

total variation across students in the analysis sample (within district blocks) is estimated to reflect 

differences in mean outcomes across schools. In other words the school-level intra-class correlation 

equals .085.  The standardized variance for classrooms in the three-level analysis equals 0.029.  This 

means that 0.029 (or 2.9 percent) of the total variation across students in the analysis sample (within 

district blocks) is estimated to reflect differences in mean outcomes across classrooms within schools.  

In other words the classroom-level intra-class correlation equals 0.029. The remaining proportion of 

total student variation (0.886) is due to differences in outcomes for students within classrooms.  If 

instead of using a three-level model, variance components for the same data are estimated ignoring the 

classroom level, the estimated school-level variance is 0.097 and thus 0.903 of the total student variance 

is within schools (see columns four and five in Table 3).   

 The important point to note about these findings is that the classroom-level variance in the 

three-level model is shifted both to the school-level variance and to the student-level variance in the 

two-level model. Specifically, the estimated school-level variance for the two-level model (0.097) is 
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larger than that for the three-level model (0.085), and the estimated variance for students within 

schools in the two-level model (0.903) is larger than that for students within classrooms in the three-

level model (0.886).  These differences are quite small however because the estimated classroom-level 

variance (0.029) is only a small proportion of total student variation. These differences, and the degree 

of “level shifting” they represent, are more pronounced for other samples in the table that have a 

greater proportion of their variation at the classroom level.  

 These variance component estimates also show that the school-level variances, and by 

extension, the school-level intra-class correlations (ICCs), estimated from a three-level model are 

generally smaller, and sometimes much smaller than the ones estimated from a two-level model 

(compare columns one and four in Table 3). Therefore, when conducting power calculations for two-

level designs, one must not use school-level ICCs estimated from a three-level model as substitutes for 

the school-level ICCs because doing so would lead to underestimation of the minimum detectable effect 

sizes of the design. 

Comparing Predicted Versus Actual Shifting of the Middle Level Variance Component 

The empirical findings presented in Table 3 are consistent in direction with Equations 4 and 5 

which predict the upward and downward shifting of an ignored classroom variance component. 

However as already noted, Equations 4 and 5 assume a constant number of classrooms per school and 

students per classroom whereas the samples used to estimate variance components for the analysis 

presented in this paper (and for almost all others in education research) comprise schools that vary in 

these regards. Table 4 thus assesses the extent to which this variation in the internal structure of schools 

(clusters) causes the actual shifting in the classroom level variance to differ from the amount of shifting 

predicted by Equations 4 and 5.  

The first two columns in the table report the actual percentage of the classroom-level variance 

that is shifted to the school level and student level respectively, and the last two columns present the 
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corresponding percentages that are predicted by Equations 4 and 5 based on the harmonic mean values 

for the number of classrooms per school and students per classroom in the analysis sample for each 

data source. Even though there was variability in the underlying cluster structure of the various data 

sets that were explored by this analysis, the distribution of the classroom level variance to the school 

and student levels is fairly consistent with what the formula predicts.   

It is also worth noting that even in situations where the percentage of variation shifted to each 

level differs from the theoretical prediction, the difference between the predicted and actual amount of 

variance that is shifted to each level may still be small if the middle-level variance component was small 

to begin with, as is the case with most of the elementary school data used in this analysis.   

 

Planning a Study: Estimated Minimum Detectable Effect Sizes   

Given the estimated variance components based on the three-level and two-level models, the 

next step in this analysis was to explore how not explicitly acknowledging the middle level affects the 

actual estimates of minimum detectable effect size for each of the outcomes in the data—this indicates 

the predicted level of precision one could expect to obtain for a study with a given sample size.  This 

issue is of interest because the power of a study might be incorrectly calculated or the standard error of 

an impact estimate might be incorrectly estimated when the model used for the power calculation and 

the ultimate impact estimation sample do not match (i.e., one is a two-level model and the other is a 

three-level model). The implications of this is first explored by first estimating the precision of three-

level and two-level analyses for a planned study with a cluster structure that is identical to the one from 

which the multilevel variances were estimated. For example, for the SBPP it is assumed that the study 

being planned would include approximately two classrooms per school and approximately four students 

per classroom (See Table 1).  These findings do not necessarily extrapolate to the typical situation in 
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practice where multilevel variances are computed from data for an existing study and then used to 

design a future study with a different sample size and structure. This situation will be explored later.   

The findings from this analysis are presented in Table 5.  The analysis uses the standardized 

variance estimates from Table 3 plus the harmonic mean number of students per classroom and 

classrooms per school (as shown in Table 1) for each outcome measure to compute the minimum 

detectable effect size for that measure given its original sample structure (within a school). The total 

number of schools was assumed be 60 and there were assumed to be 30 treatment schools and 30 

control schools for all outcomes.  Equation 1 was used to compute minimum detectable effect sizes for 

three-level analyses and Equation 2 was used for two-level analyses.  

The first set of columns in the table shows findings from models that do not include any 

covariates (other than treatment indicators and district indicator variables where applicable). The first 

column presents the minimum detectable effect size for the three-level model for each measure and the 

second column shows the difference between the minimum detectable effect size for the three-level 

model and the corresponding two-level model (the three-level estimate minus the two-level estimate).  

Consider yet again the findings for the SBPP Stanford 9 math score.  Assuming 60 schools with 2.06 

classrooms per school and 3.72 students per class (from row 1, Table 1) plus the three-level 

standardized unconditional variance estimates of 0.085, 0.029, and 0.886 for schools, classrooms and 

students, respectively (from row 1, Table 3), an unconditional minimum detectable effect size of 0.341 

was computed using Equation 1. Similarly, assuming 60 schools and an average of 7.67 students per 

school (2.06 classroom x 3.72 students)  and the two-level standardized unconditional variance 

estimates of 0.097 and 0.903 (from row 1, Table 3), an unconditional minimum detectable effect size of  

0.342 was computed using Equation 2.   The difference between these two minimum detectable effect 

sizes (0.000) is shown in the second column of Table 5.  
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Results show that for the elementary school data, where the classroom level variance is 

relatively small, the predicted level of precision is essentially the same, whether the study was planned 

using a two-level analysis or a three-level analysis.  For the elementary school data, estimates of 

minimum detectable effect sizes from the two- and three- level models differ by less than .005 in all 

cases.  While the differences in estimates of minimum detectable effect sizes are slightly larger among 

the secondary school data, where the classroom level variances components were substantially larger 

(ranging from 0.293 to 0.376), from a substantive perspective they remain quite small in absolute terms.  

So in the data sets explored in this analysis, if one did not explicitly acknowledge the middle level of 

clustering in designing a study with a data structure that was identical to the one used for planning 

purposes, one would, at worst, overstate the minimum detectable effect size by 0.021 for the North 

Carolina physics exam, which is about a 5 percent difference in precision.  From a substantive 

perspective this is a small difference.   

Including covariates 

The findings shown in Table 5 also move comparisons of two- and three-level analyses one step 

further by taking the inclusion of covariates into account.  In practice, baseline characteristics such as 

students’ prior test scores and demographics are often used as covariates to improve the precision of 

impact estimates; yet theoretical explorations of the implications of not explicitly acknowledging the 

middle level assume that no covariates are included. Therefore, to see how the inclusion of covariates 

would influence the results shown in the first column of Table 5,  a corresponding set of analyses were 

conducted in which either a school-level pretest variable (second set of columns) or a student-level 

pretest variable (third set of columns) was included.   

To the extent that covariates predict the variation in outcomes across individuals, classrooms, or 

schools, they reduce the “unexplained” variance at each of these levels. This, in turn, reduces the 



 

19 
 

standard error of the impact estimate. Therefore, with covariates, the formula for computing the 

minimum detectable effect size for a three-level model (Model A) becomes: 
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And for a two-level model (Model B) the formula becomes:  
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Where 𝑅𝑠𝑐 (𝐴)
2  = the explanatory power of covariates for outcome differences between  

           schools based on model A 

            𝑅𝑠𝑐 (𝐵)
2  = the explanatory power of covariates for outcome differences between  

           schools based on model B; 

 

            𝑅𝑐𝑙 (𝐴)
2  = the explanatory power of covariates for outcome differences between 

           classrooms within schools based on model A; 

            𝑅𝑠𝑡 (𝐴)
2  = the explanatory power of covariates for outcome differences across students  

                      within classrooms based on model A;  

            𝑅𝑠𝑡 (𝐵)
2  = the explanatory power of covariates for outcome differences across students  

                      within classrooms based on model B; and 

 

   C  =  the number of school-level covariates in the model. 
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All other parameters are defined as in Equation 1 and 2. 

 

 The R-squared values are calculated as the proportion of each unconditional variance that is 

explained by the covariates, that is, for level L, where L = school, classroom, or student, 

        (8) 

Where  is the unconditional variance at level L when no covariates are included in the model, 

is the conditional variance at level L when covariates are added. 

   

Based on these estimated R-squared values (presented in Appendix Table A-1) and the original 

unconditional variances presented in Table 3, it is possible to use Equations 6 and 7 to estimate the 

minimum detectable effect size for the original sample given available covariates. To do so for the 

school-level pretest, the R-squared obtained after including a school-level pretest in Design A was 

computed and substituted into Equation 6 above.  For the student-level pretest,  the R-squared values 

obtained for school, classroom, and student levels after including a student-level pretest in Design A was 

computed. In all cases, the unconditional variances and total number of students, classrooms, and 

schools remained the same as in previous models.    

The findings from these analyses are presented in the second and third sets of columns in Table 

5.  The first point to notice about these results is that including a pretest as a covariate at either at the 

school or student-level causes an overall reduction in the minimum detectable effect size (a finding that 

is consistent with prior research).  Take again the SBPP math score.  Without covariates, the MDES for 

the three-level analysis is 0.341.  With a school-level pretest variable the MDES from the three-level 
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analysis is reduced to 0.256 and with a student level-pretest the MDES from the three-level analysis is 

reduced to 0.316.  A similar reduction is seen in the two-level models.   

The second point to notice about the results presented in the second and third set of columns in 

Table 5 is that including a school-level covariate in the models used to estimate the MDES tends to 

exacerbate the difference between the predicted MDES obtained from a three-level analysis and the 

comparable two-level analysis relative to models that included no covariates.   In all instances, the 

difference between the three-level and two-level estimate of MDES is larger than in the unconditional 

model.  Furthermore, in these instances the minimum detectable effect size would be underestimated if 

a two-level model were used.   This is because including the pretest at the school level reduces the 

variance at the school level, thereby increasing the relative amount of variance that is accounted for at 

the classroom level, which is the source of the potential problem being examined.  However, the 

differences between the two and three-level analyses remain quite small, especially for elementary 

school data.  The largest difference is 0.032, for the North Carolina high school geometry test.  Thus, 

although the inclusion of a school-level pretest makes the difference between the two and three-level 

analyses larger, in no case does one observe a “distortion” that is substantively important. 

On the other hand, as can be seen in the third set of columns, the inclusion of a student-level 

pretest variable reduces the difference between the estimated MDES obtained from the two and three-

level analyses.   In all instances, the differences between the predicted MDES from the three and two-

level analyses are smaller when the student-level pretest variable is included than is the case for the 

unconditional analyses.  Additionally, including a student-level pretest seems to eliminate some of the 

largest differences that were observed in the unconditional analyses.  With the inclusion of the student-

level pretest variable, for example, the difference between the two and three-level analyses for the 

North Carolina high school chemistry test is reduced from 0.017 to 0.000.  The largest difference 

between the predicted MDES from the three and two-level analyses is 0.026 (North Carolina physics) 



 

22 
 

when a student level pretest is included. Note that algebra I scores were used as pretest measures for 

North Carolina secondary school subjects. This large difference may reflect the fact that algebra I is not a 

very good proxy for students’ previous knowledge of physics. It is not hard to see why including the 

student-level pretest helps to reduce the problem.  As shown earlier, the problem in the secondary 

school data is being driven by the large classroom level variance component.  If a student level pretest is 

included, this classroom level variance component is reduced substantially because much of it is 

accounted for by the student-level covariate.  More importantly, the student-level covariate absorbs as 

much or more of the classroom-level variance than it does of the school-level or student-level variances, 

especially at the secondary school level. This pattern is demonstrated by the school-, classroom-, and 

student-level R-squared values for student covariates reported in Appendix Table A-1. On the other 

hand, including a school-level pretest tends to exacerbate the problem because the school-level pretest 

only reduces variance at the school level, making the relative size of classroom-level variance even 

larger.  

 In summary, these findings illustrate that minimum detectable effect sizes computed from a 

two-level analysis, even when school-level or student-level covariates are included, are quite similar to 

those computed from a three-level analysis with the same data and covariates.   

Varying the sample structure  

The findings presented in Table 5 assume that the planned study has a cluster structure that is 

identical to the one from which the multi-level variances were estimated and used in the MDES 

calculation.  However, these findings do not necessarily extrapolate to the typical situation in practice 

where multilevel variances are computed from data for an existing study and  then used to design a 

future study with a different sample structure. One way to emulate this common situation is to vary the 

assumed target or planning sample structure and recompute minimum detectable effects for two-level 

and three-level analyses based on current estimates for their intra-class correlations and R-squares. 
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Tables 6 and 7 show what the implications would be for planning a study when the underlying cluster 

structure has twice as many classrooms per school as the study being used to estimate relevant intra-

class correlations and R-squares (Table 6) and what the implications would be if the study being planned 

had half as many classrooms as the study being used to estimate relevant intra-class correlations and R-

squares (Table 7).  Note in all cases that the total number of schools, as well as the total number of 

students per school, remains constant, and thus the two-level estimates used to create Tables 6 and 7 

are the same as those used to create Table 5.  

 Recall that the original SBPP Stanford math data had approximately four students per classroom 

and two classrooms per school (see Table 1).  Table 6 explores the implications of planning a study in 

which, instead of having two classrooms per school and four students per classroom, there are four 

classrooms per school with two students per classroom.  As before, the first set of columns in Table 6 

show results for analyses without covariates.  The second set of columns show analyses in which a 

school-level pretest is included and the third shows the results of analyses in which a student-level 

pretest is included.    

The findings in Table 6 illustrate that when the number of classrooms per school is doubled and 

the number of students per school is held constant, the minimum detectable effect sizes computed from 

a two-level analysis with or without covariates are almost identical to those computed from a three-

level analysis with the same data and covariates.  Thus, if one is planning a study in which the number of 

classrooms per school is greater than the number in the study used to compute the MDES, using a two-

level model for analysis purposes will provide good estimates of the MDES, even though the middle level 

is not being accounted for explicitly.  

Table 7 shows corresponding findings after halving the number of classrooms per school but 

holding constant the number of students per school.  The results shown in Table 7 also indicate that, 

with the exception of the North Carolina secondary school data, the MDESs from the two- and three-
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level analyses yield quite comparable results, even though the sample structure has changed 

substantially.  For the elementary school data the difference between the estimates of MDES derived 

from the two and three-level model are never more than 0.031.  However, for the North Carolina 

secondary school data the differences between the estimates obtained from the two- and three-level 

analyses are much more sizable, ranging from 0.073 to 0.099. When a school-level pretest is added to 

the model (second set of columns)--a step that, as seen  earlier, tends to magnify the difference 

between the two- and three-level models--the  differences in MDES between the two models range 

from 0.093 to .0.126 for the various North Carolina secondary school outcomes.  In this instance using a 

two-level model to estimate the MDES in a study where the underlying data structure is actually 

comprised of three levels could be misleading.  Yet, as also demonstrated earlier, including a student-

level pretest (third set of columns) can reduce the difference between the estimates obtained from the 

two- and three-level models and help mitigate problems.  In this case the inclusion of the student-level 

pretest does reduce the differences substantially. 

Planning a Study: Summary 

Given these findings, what are the implications of planning a study that randomizes groups 

comprised of three levels of variation, without explicitly accounting for the middle level? The preceding 

discussion shows that in almost all instances the MDES obtained using two levels of data (for example, 

students clustered within schools) is very similar to what would have been obtained with data at three-

levels (for example, students clustered within classrooms within schools). This is true even when the 

data being used for planning purposes have a variable cluster structure, include covariates at the 

student level or school level or do not reflect the same underlying structure as the sample used in the 

actual study (that is, same number of students per classroom and classrooms per school).   The similarity 

of MDESs is especially true for data in which the variance component at the classroom-level is relatively 

small—which is usually the case in elementary schools.  When the classroom-level variance component 
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is large, the difference between the estimates derived from the two- and three-level analyses can in rare 

cases be meaningful, and the addition of a school-level pretest variable can make this problem worse.  

But including a pretest variable at the student level can help eliminate this problem under most 

circumstances.   

 

Analyzing Data with a Three-Level Structure using a Two-Level Model 

 Until now the discussion has focused on planning future studies using three-level data when the 

extant data lack information at the middle level, that is, the classroom level.  We now consider the 

analysis of the data from the impact study itself: specifically, does the point estimate and estimated 

standard error for an impact at the school-level remain the same whether or not the middle level of a 

three-level situation is considered explicitly? This question is particularly important since in many 

instances researchers are not able to explicitly link students to classes within schools and have no choice 

but to estimate a two-level model that does not explicitly consider the middle level of the data 

structure.  

 It has been shown that estimating a three-level model using feasible generalized least squares 

that fully accounts for the clustering in one’s data will provide consistent and asymptotically efficient 

estimates (Cheung, Fotiu, and Raudenbush, 2001).  The questions here are whether researchers can 

obtain consistent estimates of program impact if they misspecify the model by not explicitly accounting 

for the middle level of clustering and whether the resulting estimates will be asymptotically efficient.   

  It can be shown that for samples with a constant number of students per classroom and 

classrooms per school and no covariates at the student, classroom or school level other than the 

treatment indicator at school level, one will obtain identical estimates of program impacts and identical 

estimates of standard errors whether or not the middle level of a three-level situation is explicitly 

acknowledged.3 However, as was the case when MDESs obtained from two and three-level models were 
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considered, these proofs only hold for data that have a cluster structure that remains constant across 

clusters (that is, schools), which is rarely the case in practice. In addition, the proofs do not take into 

account situations in which covariates are included at the student or school level—a situation that also 

frequently occurs.  Furthermore, the proofs are for expected values of the estimators being considered, 

not for specific estimates from a given sample. To explore how well conclusions from the proofs hold for 

a broader and more realistic range of data structures, the paper returns to its empirical analyses.  

 Table 8 present coefficient estimates and estimated standard errors for a school-level treatment 

indicator using both a two- and three-level model, for the four present data sources.  All results in Table 

8 are reported as standardized mean difference effect sizes so that these results can be compared 

across different data sources and outcome measures. .4Recall that throughout the paper, the RFIS data 

are used to explore the implications of these data for a research design that would have randomized the 

schools. Therefore the RFIS impact estimates reported here (which are purely for methodological 

purposes) are not at all the same as those for the original study (which was based on a different 

research design and a different sample). Also recall that no specific interventions are being tested with 

the data for Florida and North Carolina, where a zero/one treatment indicator was simply randomly 

assigned to each school. In this case estimates of the coefficient for this indicator should be 

approximately zero. The first four columns include no covariates other than a treatment status indicator 

and indicators for districts. Columns 5 through 8 show models with a school level pretest included and 

columns 9 through 12 include a student-level covariate.    

While the point estimates and standard errors shown in Table 8 are not exactly the same for the 

two types of analyses, they are in most instances quite comparable.  Even in  instances where  point 

estimates and standard errors differ somewhat, the same inferences would be drawn from a two-level 

or a three-level model.  For example, for the RFIS data the impact estimate for the second grade test 

was -0.078 standard deviations with a standard error of 0.04 when the impact was estimated using a 
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three-level model.   The corresponding two-level model yielded an impact estimate of -0.070 standard 

deviations with a standard error of 0.04.  Both point estimates are similar in magnitude and neither is 

statistically significant, so in both instances the evidence indicates that Reading First had little or no 

impact on second grade SAT 10 reading scores. These findings hold across data sets of widely varying 

sizes and structures. 

As was the case for planning a study, these findings suggest that a two-level model can be used 

to estimate program impacts even when it does not explicitly acknowledge a middle level of clustering. 

This is particularly true when the middle-level variance component is small, as is the case for most 

elementary school outcomes.  However, the finding also holds for secondary school data, where the 

classroom-level variance component is relatively larger, and for situations where the cluster structure 

varies across the schools in the sample and when covariates are included in the model.  

  

Conclusions 

As noted, this paper is intended to provide practical guidance to researchers who are designing 

and analyzing studies that randomize schools to measure intervention effects on student academic 

outcomes when no information is available about the middle (classroom) level of clustering. Using four 

multisite data sets based on academic outcomes for students within classrooms within schools, the 

paper has explored in detail the implications of not explicitly acknowledging the middle level when  

planning or analyzing data in which the coefficient of interest is at the third (school) level. The analysis 

shows that in almost all situations one will obtain nearly identical results whether or not the classroom 

or middle level is acknowledged explicitly.  With one exception, this conclusion holds for both 

elementary school data (for which the classroom variance component is typically quite small) and for 

secondary school data (for which the classroom variance component is somewhat larger), for data sets 

with varying numbers of student per classroom and classrooms per school, in situations where 
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covariates are included at either the student or school level and in situations where the cluster structure 

of the study being planned differs substantially from the one used for planning purposes.   The only 

potential problem arises when the middle-level variance component is large (which is usually only the 

case for secondary school data) and when the study being planned has a markedly different cluster 

structure than the study that was used for planning purposes.  Even in this kind of situation, if a student 

level pretest variable is included in the models, any potential problems that may arise can be virtually 

eliminated.   Thus in most situations researchers can proceed with two-level analyses of three-level data 

without too much cause for concern.    
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Notes 

1. For one tailed test,  𝑀 = 𝑡𝛼 + 𝑡1−𝛽; for two tailed test, 𝑀 = 𝑡𝛼/2 + 𝑡1−𝛽.  𝛼 is the targeted 

statistical significance level and 𝛽 is the targeted power of the test. 

2. This pattern is also observed in the 10th grade reading and math FCAT score for Florida 

secondary schools. The class-level ICC for FCAT math test score for grade 10 is 0.486 and for 

FCAT reading test score for grade 10 is 0.348.  Note however that, at the secondary school level 

in Florida, math and English language/arts courses are much more diversified (with over 50 

math-related courses and over 80 English language-related courses to choose from). Most 

students also take more than one such course in a year. In order to select a classroom for each 

student that best corresponds to the end-of-grade math test or the end-of-grade reading test, 

we rank the courses taken by a student by how frequently those courses were taken by tenth 

grade students, and define that student’s classroom by the most frequently taken course. 

Because this classroom assignment approach is rather arbitrary, we do not include these results 

in the main discussion of the paper but rather use them as references.  

3. Proof of this statement is available from the authors upon request. 

4. Effect sizes are calculated using student-level outcome score standard deviations for control 

group students. 

 



30 
 

References  
 
Abt Associates Inc., and Promar International. 2005. Evaluation of the School Breakfast Program 

Pilot Project: Final Report. Alexandria, VA: U.S. Department of Agriculture, Food and 
Nutrition Service, Office of Analysis, Nutrition, and Evaluation. 

 
Bloom, H. S. 2005. “Randomizing Groups to Evaluate Place-Based Programs.” Pages 115-172 in 

Howard S. Bloom (ed.), Learning More from Social Experiments: Evolving Analytic 
Approaches. New York: Russell Sage Foundation. 

 
Bloom, H. S., L. Richburg-Hayes, and A. Black. 2007. “Using Covariates to Improve Precision for 

Studies That Randomize Schools to Evaluate Educational Interventions.” Educational 
Evaluation and Policy Analysis 29: 30-59. 

 
Cheong, Y. F., R. P. Fotiu, and S. W. Raudenbush. 2001. “Efficiency and Robustness of Alternative 

Estimators for Two- and Three-Level Models: The Case of NAEP.” Journal of Educational 
and Behavioral Statistics 26 (4): 411- 429. 

 
Gamse, B. C., H. S. Bloom, J. J. Kemple, and R. T. Jacob. 2008. Reading First Impact Study: Interim 

Report (NCEE 2008-4016). Washington, DC: National Center for Education Evaluation 
and Regional Assistance, Institute of Education Sciences, U.S. Department of Education. 

 
Hedges, L. V., and E. C. Hedberg. 2007. “Intraclass Correlation Values for Planning Group-

Randomized Trials in Education.” Educational Evaluation and Policy Analysis 29 (1): 60-
87. 

 
Moerbeek, M. 2004. “The Consequence of Ignoring a Level of Nesting in Multilevel Analysis.” 

Multivariate Behavioral Research 39: 129-149. 
 
Opdenakker, M. C., and J. Van Damme. 2000. “The Importance of Identifying Levels in Multilevel 

Analysis: An Illustration of the Effects of Ignoring the Top or Intermediate Levels in 
School Effectiveness Research.” School Effectiveness and School Improvement 11: 103-
130. 

 
Tranmer, M., and D. G. Steele. 2001. “Ignoring a Level in a Multilevel Model: Evidence from UK 

Census Data.” Environment and Planning A 33 (5): 941-948. 
 
Van Landeghem, G., B. De Fraine, and J. Van Damme. 2005. “The Consequence of Ignoring a 

Level of Nesting in Multilevel Analysis: A Comment.” Multivariate Behavioral Research 
40: 423-434. 

 
Van den Noortgate, W., M. C. Opdenakker, and P. Onghena. 2005. “The Effects of Ignoring a 

Level in Multilevel Analysis.” School Effectiveness and School Improvement 16: 281-303. 
 
Wooldridge, J. M. 2002. Econometric Analysis of Cross Section and Panel Data. Cambridge, MA: 

MIT Press. 



31 
 

 

Table 1. Data Structure for Each Study and Outcome

Outcome
Number of 
Districts

Harmonic Mean  
Number of 
Schools per 

District 

Harmonic Mean 
Number of 
Classes per 
School (K)

Harmonic Mean 
Number of 

Students per 
Class (N)

SBPP:
    Stanford 9 Total Math scaled score                                   4 7.94 2.06 3.72
    Stanford 9 Total Reading scaled score                                4 5.86 2.05 3.74

RFIS:
   SAT 10 reading comprehension test grade 1 16 9.49 3.17 9.21
   SAT 10 reading comprehension test grade 2 16 9.58 3.11 9.16
   SAT 10 reading comprehension test grade 3 15 9.79 3.01 9.69

FL Elementary School Data: 
  FCAT Math test for grade 5 43 6.34 4.13 17.30
  FCAT Reading test for grade 5 43 6.34 4.13 17.27

NC Elementary School Data: 
  Math test for grade 5 86 5.26 2.94 16.33
  Reading test for grade 5 86 5.26 2.94 16.30

NC Secondary School Data: 
  High School Algebra 2 41 2.99 3.17 19.75
  High School Biology 48 2.91 3.00 15.90
  High School Chemistry 29 2.63 2.82 18.38
  High School Geometry 44 2.96 2.97 19.40
  High School Physics 6 2.86 2.64 15.39

Sources: The School Breakfast Pilot Project (SBPP)  first follow-up year database, the Reading First Impact Study (RFIS)  first follow-up year 
database, the Florida Department of Education's K-20 Education Data Warehouse (FL-EDW) for 2005, and the North Carolina Education 
Research Data Center for 2005. Classes with only one student in the sample and schools with only one class in the sample are excluded from  
the analysis presented in this table.  



32 
 

 

Table 2. Variation in Data Structure for Each Study and Outcome

Outcome

Standard 
Deviation of 
Number of 
Schools per 

District

Standard 
Deviation of 
Number of 

Classes per 
School

Standard 
Deviation of 
Number of 

Students per 
Class

SBPP:
    Stanford 9 Total Math scaled score                                   18.97 0.28 1.27
    Stanford 9 Total Reading scaled score                                18.95 0.26 1.25

RFIS:
   SAT 10 reading comprehension test grade 1 7.01 1.44 4.75
   SAT 10 reading comprehension test grade 2 6.57 1.56 4.77
   SAT 10 reading comprehension test grade 3 6.85 1.45 4.56

FL Elementary School Data: 
  FCAT Math test for grade 5 43.44 1.91 4.75
  FCAT Reading test for grade 5 43.44 1.91 4.76

NC Elementary School Data: 
  Math test for grade 5 11.77 1.19 3.86
  Reading test for grade 5 11.77 1.19 3.86

NC Secondary School Data: 
  High School Algebra 2 3.33 2.32 4.95
  High School Biology 2.96 2.04 5.58
  High School Chemistry 2.55 2.50 4.95
  High School Geometry 5.24 2.11 5.28
  High School Physics 3.25 1.00 4.84

Sources: The School Breakfast Pilot Project (SBPP)  first follow-up year database, the Reading First Impact Study (RFIS)  first follow-up 
year database, the Florida Department of Education's K-20 Education Data Warehouse (FL-EDW) for 2005, and the North Carolina 
Education Research Data Center for 2005. Classes with only one student in the sample and schools with only one class in the sample are 
excluded from  the analysis presented in this table.  
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Table 3. Three-Level vs. Two-Level Model Comparisons: Variance Components at Various Levels as Proportion of Total Variation

Outcome
School-
Levela 

Class-
Levelb

Student-
Level 

School-
Levela

Student-
Level

SBPP:
    Stanford 9 Total Math scaled score                                   0.085 0.029 0.886 0.097 0.903
    Stanford 9 Total Reading scaled score                                0.064 0.070 0.865 0.094 0.906

RFIS:
   SAT 10 reading comprehension test grade 1 0.073 0.063 0.863 0.095 0.905
   SAT 10 reading comprehension test grade 2 0.043 0.066 0.892 0.060 0.940
   SAT 10 reading comprehension test grade 3 0.039 0.073 0.888 0.061 0.939

FL Elementary School Data: 
  FCAT Math test for grade 5 0.100 0.140 0.760 0.132 0.868
  FCAT Reading test for grade 5 0.082 0.123 0.795 0.109 0.891

NC Elementary School Data:
  Math test for grade 5 0.088 0.094 0.818 0.118 0.882
  Reading test for grade 5 0.071 0.063 0.866 0.090 0.910

NC Secondary School Data:
  High School Algebra 2 0.124 0.376 0.500 0.222 0.778
  High School Biology 0.077 0.293 0.630 0.159 0.841
  High School Chemistry 0.072 0.295 0.632 0.154 0.846
  High School Geometry 0.158 0.356 0.487 0.276 0.724
  High School Physics 0.165 0.342 0.493 0.259 0.741

3-Level Model
Variance Components Proportion

2-Level Model

Sources: The School Breakfast Pilot Project (SBPP)  first follow-up year database, the Reading First Impact Study (RFIS)  first follow-up year 
database, the Florida Department of Education's K-20 Education Data Warehouse (FL-EDW) for 2005, and the North Carolina Education 
Research Data Center for 2005. Classes with only one student in the sample and schools with only one class in the sample are excluded from  
the analysis presented in this table.  

Notes: Estimated values for the variance components were obtained from a three-level model and a two-level model of the outcome measure 
without covariates.  All analyses for SBPP and RFIS include an indicator variable distinguishing treatment and control groups as well as 
indicator variables for school districts in the study sample. Models used for the FL and NC data only include indicator variables for school 
districts in the study sample. 
aVariance component at school level as a proportion of total student variation is also known as the school-level intra-class correlation (ICCs).
bVariance component at class level as a proportion of total student variation is also known as the class-level intra-class correlation (ICCs).
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Table 4. Three-Level vs. Two-Level Model Comparisons: Percentage of Variance Shifted to School and Student  
               Level When Class Level Is Not Explicitly Accounted For

Outcome

% Class-Level 
Variance 
Shifted to 

School-Level

% Class-Level 
Variance 
Shifted to 

Student-Level

% Class-Level 
Variance 
Shifted to 

School-Level

% Class-Level 
Variance 
Shifted to 

Student-Level

SBPP:
    Stanford 9 Total Math scaled score                                   42.90 57.10 40.88 59.12
    Stanford 9 Total Reading scaled score                                42.86 57.14 41.10 58.90

RFIS:
   SAT 10 reading comprehension test grade 1 33.94 66.06 29.13 70.87
   SAT 10 reading comprehension test grade 2 26.37 73.63 29.72 70.28
   SAT 10 reading comprehension test grade 3 29.89 70.11 30.83 69.17

FL Elementary School Data: 
  FCAT Math test for grade 5 22.93 77.07 23.13 76.87
  FCAT Reading test for grade 5 22.12 77.88 23.13 76.87

NC Elementary School Data:
  Math test for grade 5 31.79 68.21 32.64 67.36
  Reading test for grade 5 30.87 69.13 32.64 67.36

NC Secondary School Data: 
  High School Algebra 2 26.06 73.94 30.44 69.56
  High School Biology 28.13 71.87 31.90 68.10
  High School Chemistry 27.49 72.51 34.13 65.87
  High School Geometry 33.19 66.81 32.47 67.53
  High School Physics 27.47 72.53 36.36 63.64

Actual Predicted by Forumla

Sources: The School Breakfast Pilot Project (SBPP)  first follow-up year database, the Reading First Impact Study (RFIS)  first follow-up year 
database, the Florida Department of Education's K-20 Education Data Warehouse (FL-EDW) for 2005, and the North Carolina Education 
Research Data Center for 2005. Classes with only one student in the sample and schools with only one class in the sample are excluded from  the 
analysis presented in this table.  
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Table 5. Comparison Between Three-Level and Two-Level Estimates: Minimum Detectable Effect Sizes (MDES) , 
               Orginal Sample Structure 

Outcome
3-Level 
Model

Difference 
(3 lvl-2 lvl)

3-Level 
Model

Difference 
(3 lvl-2 lvl)

3-Level 
Model

Difference 
(3 lvl-2 lvl)

SBPP:
    Stanford 9 Total Math scaled score                                   0.341 0.000 0.256 0.003 0.316 -0.001
    Stanford 9 Total Reading scaled score                                0.339 -0.001 0.254 0.005 0.333 0.000

RFIS:
   SAT 10 reading comprehension test grade 1 0.258 -0.003 0.197 -0.003 0.216 -0.005
   SAT 10 reading comprehension test grade 2 0.227 0.003 0.164 0.015 0.186 0.001
   SAT 10 reading comprehension test grade 3 0.226 0.001 0.171 0.005 0.192 0.000

FL Elementary School Data: 
  FCAT Math test for grade 5 0.280 0.000 0.183 0.005 0.155 0.000
  FCAT Reading test for grade 5 0.258 0.001 0.166 0.007 0.136 0.000

NC Elementary School Data:
  Math test for grade 5 0.272 0.001 0.214 0.003 0.191 -0.001
  Reading test for grade 5 0.245 0.001 0.190 0.003 0.158 0.000

NC Secondary School Data: 
  High School Algebra 2 0.368 0.012 0.319 0.022 0.247 0.013
  High School Biology 0.319 0.009 0.271 0.009 0.231 -0.001
  High School Chemistry 0.320 0.017 0.287 0.028 0.231 0.000
  High School Geometry 0.393 -0.002 0.281 0.032 0.237 0.009
  High School Physics 0.408 0.020 0.344 0.024 0.273 0.026

Minimum Detectable Effect Size  (# of schools = 60, T/C = 1:1)

No Covariates School-Level Pretest Student-Level Pretest

Sources: The School Breakfast Pilot Project (SBPP)  first follow-up year database, the Reading First Impact Study (RFIS)  first follow-up year database, the 
Florida Department of Education's K-20 Education Data Warehouse (FL-EDW) for 2005, and the North Carolina Education Research Data Center for 2005. 
Classes with only one student in the sample and schools with only one class in the sample are excluded from  the analysis presented in this table.  

Notes: Estimated values for the intraclass correlations were obtained from a three-level model and a two-level model of the outcome measure without 
covariates.  A school-level pretest and a student-level pretest measure were used in the model to obtain the R-squared values used in the MDES calculation 
for models with covariates. In addition, all analyses for SBPP and RFIS include an indicator variable distinguishing treatment and control groups as well as 
indicator variables for school districts in the study sample. Models used for the FL and NC data only include indicator variables for school districts in the 
study sample. 
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Table 6. Minimum Detectable Effect Sizes (MDES) for Alternative Sample Structures, Double the Number of Classes per School

Outcome
3-Level 
Model

Difference 
(3 lvl-2 lvl)

3-Level 
Model

Difference 
(3 lvl-2 lvl)

3-Level 
Model

Difference 
(3 lvl-2 lvl)

SBPP:
    Stanford 9 Total Math scaled score                                   0.336 -0.006 0.254 0.001 0.309 -0.008
    Stanford 9 Total Reading scaled score                                0.325 -0.015 0.250 0.002 0.319 -0.014

RFIS:
   SAT 10 reading comprehension test grade 1 0.247 -0.014 0.183 -0.018 0.203 -0.018
   SAT 10 reading comprehension test grade 2 0.214 -0.010 0.148 -0.001 0.169 -0.016
   SAT 10 reading comprehension test grade 3 0.211 -0.014 0.151 -0.015 0.173 -0.018

FL Elementary School Data: 
  FCAT Math test for grade 5 0.263 -0.017 0.156 -0.022 0.149 -0.006
  FCAT Reading test for grade 5 0.242 -0.015 0.140 -0.019 0.132 -0.004

NC Elementary School Data: 
  Math test for grade 5 0.256 -0.016 0.193 -0.018 0.184 -0.008
  Reading test for grade 5 0.232 -0.011 0.174 -0.012 0.154 -0.006

NC Secondary School Data: 
  High School Algebra 2 0.322 -0.034 0.265 -0.032 0.224 -0.010
  High School Biology 0.274 -0.035 0.217 -0.046 0.213 -0.019
  High School Chemistry 0.272 -0.031 0.233 -0.025 0.208 -0.024
  High School Geometry 0.350 -0.045 0.220 -0.029 0.219 -0.009
  High School Physics 0.362 -0.025 0.289 -0.031 0.248 0.001

No Covariates School-Level Pretest Student-Level Pretest

Minimum Detectable Effect Size, Double the Number of Classes per School         
(Keep # of students/school constant, K=2Ko, N=No/2, # of schools = 60, T/C = 1:1)

Sources: The School Breakfast Pilot Project (SBPP)  first follow-up year database, the Reading First Impact Study (RFIS)  first follow-up year database, the 
Florida Department of Education's K-20 Education Data Warehouse (FL-EDW) for 2005, and the North Carolina Education Research Data Center for 2005.  
Classes with only one student in the sample and schools with only one class in the sample are excluded from  the analysis presented in this table.  

Notes: Estimated values for the intraclass correlations were obtained from a three-level model and a two-level model of the outcome measure without covariates.  
A school-level pretest and a student-level pretest measure were used in the model to obtain the R-squared values used in the MDES calculation for models with 
covariates. In addition, all analyses for SBPP and RFIS include an indicator variable distinguishing treatment and control groups as well as indicator variables for 
school districts in the study sample. Models used for the FL and NC data only include indicator variables for school districts in the study sample. 
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Table 7. Minimum Detectable Effect Sizes (MDES) for Alternative Sample Structures, Half of the Number of Classes per School

Outcome
3-level 
Model

Difference 
(3 lvl-2 lvl)

3-level 
Model

Difference 
(3 lvl-2 lvl)

3-level 
Model

Difference 
(3 lvl-2 lvl)

SBPP:
    Stanford 9 Total Math scaled score                                   0.352 0.011 0.260 0.007 0.329 0.012
    Stanford 9 Total Reading scaled score                                0.365 0.026 0.260 0.011 0.358 0.025

RFIS:
   SAT 10 reading comprehension test grade 1 0.278 0.017 0.224 0.023 0.241 0.020
   SAT 10 reading comprehension test grade 2 0.251 0.026 0.192 0.042 0.215 0.030
   SAT 10 reading comprehension test grade 3 0.253 0.028 0.204 0.038 0.224 0.032

FL Elementary School Data: 
  FCAT Math test for grade 5 0.311 0.031 0.227 0.049 0.166 0.011
  FCAT Reading test for grade 5 0.287 0.031 0.208 0.049 0.144 0.008

NC Elementary School Data: 
  Math test for grade 5 0.303 0.031 0.251 0.040 0.203 0.011
  Reading test for grade 5 0.267 0.024 0.218 0.032 0.164 0.006

NC Secondary School Data: 
  High School Algebra 2 0.447 0.091 0.406 0.109 0.287 0.054
  High School Biology 0.393 0.084 0.355 0.093 0.264 0.032
  High School Chemistry 0.399 0.095 0.371 0.113 0.272 0.041
  High School Geometry 0.469 0.073 0.374 0.126 0.268 0.040
  High School Physics 0.486 0.099 0.434 0.114 0.317 0.070

No covariates Student-Level Pretest

Minimum Detectable Effect Size, Half of the Number of Classes per School                       
(Keep # of students/school constant, K=Ko/2, N=2No, # of schools = 60, T/C = 1:1)

School-Level Pretest

Sources: The School Breakfast Pilot Project (SBPP)  first follow-up year database, the Reading First Impact Study (RFIS)  first follow-up year database, the 
Florida Department of Education's K-20 Education Data Warehouse (FL-EDW) for 2005, and the North Carolina Education Research Data Center for 2005. 
Classes with only one student in the sample and schools with only one class in the sample are excluded from  the analysis presented in this table.  

Notes: Estimated values for the intraclass correlations were obtained from a three-level model and a two-level model of the outcome measure without covariates.  
A school-level pretest and a student-level pretest measure were used in the model to obtain the R-squared values used in the MDES calculation for models with 
covariates. In addition, all analyses for SBPP and RFIS include an indicator variable distinguishing treatment and control groups as well as indicator variables for 
school districts in the study sample. Models used for the FL and NC data only include indicator variables for school districts in the study sample. 
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Table 8. Three-Level vs. Two-Level Model Comparisons: Impact Estimates and Standard Errors (S.E.) in Effect Size Unit

Outcome Impact S.E. Impact S.E. Impact S.E. Impact S.E. Impact S.E. Impact S.E.

SBPP:
    Stanford 9 Total Math scaled score                                   0.115 0.101 0.115 0.101 0.171 0.093 0.172 0.094 -0.041 0.072 -0.041 0.072
    Stanford 9 Total Reading scaled score                                0.075 0.098 0.078 0.098 0.104 0.098 0.107 0.097 -0.036 0.058 -0.035 0.058

RFIS:
   SAT 10 reading comprehension test grade 1 -0.002 0.048 -0.003 0.049 0.085 0.041 0.081 0.042 0.033 0.037 0.034 0.038
   SAT 10 reading comprehension test grade 2 -0.078 0.040 -0.070 0.040 0.004 0.033 0.008 0.033 -0.001 0.025 0.003 0.025
   SAT 10 reading comprehension test grade 3 -0.104 0.041 -0.096 0.041 -0.023 0.035 -0.019 0.035 0.001 0.020 0.003 0.020

FL Elementary School Data: 
  FCAT Math test for grade 5 -0.014 0.022 -0.012 0.022 0.000 0.013 -0.008 0.014 0.006 0.011 -0.002 0.012
  FCAT Reading test for grade 5 0.001 0.020 -0.001 0.020 -0.001 0.012 -0.012 0.013 0.006 0.010 -0.003 0.011

NC Elementary School Data: 
  Math test for grade 5 -0.022 0.025 -0.019 0.025 -0.018 0.019 -0.015 0.019 0.000 0.017 0.002 0.018
  Reading test for grade 5 -0.027 0.022 -0.027 0.022 -0.025 0.017 -0.024 0.017 -0.017 0.014 -0.016 0.014

NC Secondary School Data: 
  High School Algebra 2 -0.055 0.074 -0.072 0.073 -0.076 0.062 -0.082 0.061 -0.050 0.050 -0.048 0.048
  High School Biology 0.113 0.062 0.108 0.062 0.062 0.051 0.059 0.053 0.062 0.046 0.053 0.047
  High School Chemistry -0.093 0.085 -0.076 0.084 -0.096 0.075 -0.087 0.071 -0.040 0.063 -0.034 0.065
  High School Geometry -0.011 0.079 -0.016 0.082 0.028 0.053 0.023 0.051 -0.003 0.048 -0.007 0.047
  High School Physics 0.178 0.228 0.124 0.220 0.145 0.192 0.095 0.182 0.147 0.153 0.129 0.139

Impact Estimate
without Covariates with School Covariate with Student Covariate

3-Level Model 2-Level Model 3-Level Model 2-Level Model 3-Level Model 2-Level Model

Sources: The School Breakfast Pilot Project (SBPP)  first follow-up year database, the Reading First Impact Study (RFIS)  first follow-up year database, the Florida Department of 
Education's K-20 Education Data Warehouse (FL-EDW) for 2005, and the North Carolina Education Research Data Center for 2005. Classes with only one student in the sample and 
schools with only one class in the sample are excluded from  the analysis presented in this table.  

Notes: Estimated impacts were obtained from a three-level model and a two-level model of the outcome measure with or without school or student-level pretests as covariate. All analyses 
include an indicator variable distinguishing treatment and control groups as well as indicator variables for school districts in the study sample. All results are presented in effect size unit. 
Effect sizes are calculated using the student-level outcome test score standard deviations for control group students.  
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Appendix Table A-1. Three-Level vs. Two-Level Model Comparisons: Estimated R-Squared for School- and Student-Level Covariates

Outcome
School-
Level

Class-
Level

Student-
Level 

School-
Level

Student-
Level

School-
Level

Class-
Level

Student-
Level 

School-
Level

Student-
Level

SBPP:
    Stanford 9 Total Math scaled score                                   0.377 -0.107 0.005 0.311 0.004 0.514 0.393 0.477 0.510 0.475
    Stanford 9 Total Reading scaled score                                0.092 0.057 -0.003 0.091 -0.001 0.765 0.890 0.503 0.795 0.520

RFIS:
   SAT 10 reading comprehension test grade 1 0.506 -0.021 0.000 0.379 0.000 0.504 0.351 0.139 0.470 0.150
   SAT 10 reading comprehension test grade 2 0.752 -0.022 0.000 0.503 0.000 0.659 0.711 0.464 0.661 0.477
   SAT 10 reading comprehension test grade 3 0.674 -0.006 0.000 0.420 0.000 0.846 0.798 0.522 0.830 0.536

FL Elementary School Data: 
  FCAT Math test for grade 5 0.824 0.009 0.000 0.649 0.000 0.663 0.805 0.605 0.696 0.628
  FCAT Reading test for grade 5 0.874 0.014 0.000 0.687 0.000 0.697 0.868 0.505 0.738 0.543

NC Elementary School Data:
  Math test for grade 5 0.592 0.012 0.000 0.460 0.000 0.406 0.718 0.654 0.475 0.659
  Reading test for grade 5 0.615 0.015 0.000 0.499 0.000 0.515 0.827 0.566 0.580 0.579

NC Secondary School Data:
  High School Algebra 2 0.493 0.014 0.000 0.322 0.000 0.461 0.661 0.329 0.576 0.467
  High School Biology 0.675 0.003 0.000 0.312 0.000 0.229 0.693 0.310 0.442 0.422
  High School Chemistry 0.484 0.023 0.000 0.305 0.000 0.278 0.636 0.308 0.419 0.403
  High School Geometry 0.846 0.057 0.000 0.633 0.000 0.563 0.755 0.391 0.674 0.526
  High School Physics 0.526 0.008 0.000 0.340 0.000 0.504 0.630 0.329 0.603 0.438

3-Level Model
Estimated R-Squared for Student-Level Covariate

2-Level Model
Estimated R-Squared for School-Level Covariate

3-Level Model 2-Level Model

Sources: The School Breakfast Pilot Project (SBPP)  first follow-up year database, the Reading First Impact Study (RFIS)  first follow-up year database, the Florida Department 
of Education's K-20 Education Data Warehouse (FL-EDW) for 2005, and the North Carolina Education Research Data Center for 2005. Classes with only one student in the 
sample and schools with only one class in the sample are excluded from  the analysis presented in this table.  

Notes: Reported values for the R-squared were calculated using variance components at various levels estimated from a three-level model and a two-level model of the outcome 
measure with and without covariates. All models used for the SBPP and RFIS data include an indicator variable distinguishing treatment and control groups as well as indicator 
variables for school districts in the study sample. Models used for the FL and NC data only include indicator variables for school districts in the study sample. 
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