NATIONAL

Center for Analysis of Longitudinal Data in Education Research

```
TRACKING EVERY STUDENT'S LEARNING EVERY YEAR
```

A program of research by the American Institutes for Research with Duke University, Northwestern University, Stanford University, University of Missouri-Columbia, University of Texas at Dallas, and University of Washington
気AIR

How Teacher Turnover Harms Student Achievement

MATTHEW RONFELDT, SUSANNALOEB, AND
JAMES WYCKOFF

How Teacher Turnover Harms Student Achievement

Matthew Ronfeldt
University of Michigan

Susanna Loeb
Stanford University

Jim Wyckoff
University of Virginia

Contents

Notes ii
Abstract iii
Introduction 1
Data. 7
Methods 9
Results. 14
Discussion 21
Notes 24
References. 26
Figures 29
Tables 31
Appendix 42

CALDER working papers have not gone through final formal review and should be cited as working papers. They are intended to encourage discussion and suggestions for revision before final publication.

The views expressed are those of the authors and should not be attributed to the American Institutes for Research, its trustees, or any of the funders or supporting organizations mentioned herein. Any errors are attributable to the authors.

CALDER • American Institutes for Research
1000 Thomas Jefferson Street N.W., Washington, D.C. 20007
202-403-5796 • www.caldercenter.org

How Teacher Turnover Harms Student Achievement
Matthew Ronfeldt, Susanna Loeb, and Jim Wyckoff
CALDER Working Paper No. 70
January 2012

Abstract

Researchers and policymakers often assume that teacher turnover harms student achievement, but recent evidence calls into question this assumption. Using a unique identification strategy that employs grade-level turnover and two classes of fixed-effects models, this study estimates the effects of teacher turnover on over 1.1 million New York City $4^{\text {th }}$ and $5^{\text {th }}$ grade student observations over 10 years. The results indicate that students in grade-levels with higher turnover score lower in both ELA and math and that this effect is particularly strong in schools with more low-performing and black students. Moreover, the results suggest that there is a disruptive effect of turnover beyond changing the composition in teacher quality.

Introduction

Teacher turnover rates are high, particularly in schools serving low-income, non-white, and lowachieving student populations. Nationally, about 30 percent of new teachers leave the profession after five years, and the turnover rate is 50 percent higher in high-poverty schools as compared to more affluent ones (Ingersoll, 2001). Teacher turnover rates also tend to be higher in urban and lowerperforming schools (Hanushek, Kain, and Rivkin, 1999).

Researchers and policy makers often assume that teacher turnover harms student learning. There are many reasons to think it would, as institutional memory is lost and resources are spent on the hiring process. On the other hand, the organizational management literature has demonstrated that some amount of turnover may in fact be beneficial to institutions and individuals. Institutional turnover can, for example, result in better person-job matches and infusion of new ideas into organizations (Abelson \& Baysinger, 1984). To this point, Jackson (2010) recently demonstrated that poor person-job matches predict migration and that teachers tend to be more productive in their new schools. The institutional benefits of turnover can be enhanced if it is the less effective employees who leave.

Yet, there exists little empirical evidence for a direct effect of teacher turnover on student achievement (Guin, 2004; Ingersoll, 2001). Most existing research on the relationship between teacher turnover and student achievement has revealed negative correlations. For example, Guin (2004) studied 66 elementary schools in a large urban district to look at relationship between school-level turnover and the proportion of students meeting standards on statewide assessments in reading and math. Pearson correlations were significant and negative, demonstrating that schools with higher turnover also had lower achievement. These results are consistent with other correlational evidence showing schools with more teacher turnover tend also to have lower-achievement (Boyd et al., 2005; Hanushek, Kain, and Rivkin, 1999). Such evidence, though, is not necessarily causal, as a third factor (e.g. poverty, working conditions, or poor school leadership) may simultaneously cause both low achievement and higher
turnover. Even if we assume the relationship is a causal one, its direction is unclear - teachers leaving may cause low achievement but low achievement may also cause teachers to leave. To date, this study presents the best, pseudo-causal estimates for a direct effect of teacher turnover on student achievement.

"Compositional" Explanations

Most scholars who suggest teacher turnover to have a direct, causal effect on student achievement use explanations that we categorize as "compositional". They focus on the difference in quality between teachers who leave (leavers) and those who replace them to account for the overall effect of turnover on student achievement. When leaving teachers are, on average, worse than those who replace them, the effect of turnover on student achievement is assumed to be negative. In compositional explanations, the distribution of teacher quality alone is thought to drive any effects of turnover on student achievement.

In such accounts, discussion about the harmful impact of teacher turnover tends to focus on low-income, low-achieving, and high-minority schools which typically have less qualified and less experienced teachers, as well as higher turnover rates (Carroll et al., 2000; Clotfelter et al, 2007; Hanushek et al., 2004; Ingersoll, 2001). Darling-Hammond and Sykes (2003) argue that teacher turnover has a compounding effect on low-income schools. Teachers leave before they gain the necessary experience to become effective. When they leave, low-income schools have a difficult time attracting new teachers so end up hiring inexperienced and less prepared teachers.

Just because newly hired teachers tend to be inexperienced and unqualified, however, does not necessarily imply that turnover is harmful. It is possible, for example, that hired teachers are slightly less inexperienced and unqualified than those they replaced. Though the harmful effects of having less
experienced and qualified teachers in low-income schools are obvious, the harmful effects of turnover are less so.

In fact, a growing body of evidence indicates that more effective teachers are at least as likely, and sometimes more likely, to stay in schools than their less effective peers, and that this is true even in schools with historically underserved student populations (Boyd et al., 2010; Goldhaber, D., Gross, B., and Player, D., 2007; Hanushek \& Rivkin, 2010; Murnane, 1984). Boyd et al. (2010) studied data on teachers' applications for transfer to uncover which teachers are more likely to want to transfer from NYC schools. They discovered that teachers who produced higher achievement gains and those with more experience were less likely to apply for transfer. ${ }^{1}$ This reduced interest in moving held true even for teachers in the lowest-performing schools. Murnane (1984) found evidence for selective attrition of less productive teachers, as signaled by principal ratings and prior student achievement, out of one large, urban district. Similarly, Hanushek and Rivkin (2010) found that, in Texas, those who left a given school tended to be less effective than those who stayed. Contrary to common assumptions, the relative effectiveness of stayers as compared to leavers was actually highest in schools with more low-achieving and black students. In other words, the resulting net distribution of teacher quality seemed to benefit schools with historically underserved student populations the most.

In demonstrating that less effective teachers are more likely to leave than more effective counterparts, the studies described above suggest turnover may be beneficial. However, none of these studies directly tested whether the teachers who filled vacancies in a given school were more effective on average than those they replaced. Without knowing the net distribution of quality that results, it is then difficult to draw conclusions about the overall impact of turnover. Recognizing this point, Hanushek and Rivkin (2010) did simulate the impact where only "rookie" teachers replaced exiting ones, and found no overall effect of turnover on student achievement.

The results of the Hanushek and Rivkin (2010) simulation are an important challenge to the commonly held assumption that teacher turnover harms student achievement, especially that of lowperforming, low-income, and non-white students. However, their findings have important limitations, even aside from being simulated, rather than observed, effects of new hires. Like all compositional accounts, the results assume that the only lever by which teacher turnover harms or helps student achievement is by adjusting the composition of teachers that make up a school's faculty. But turnover may impact student achievement beyond the relative effectiveness of those who stay as compared to those who leave. This study contributes to existing literature by considering mechanisms for the effects of turnover beyond changes to the distribution of teacher quality.

"Disruptive" Explanations

The compositional explanations described in the previous section indicate that students benefit when they get teachers who are more effective than the ones that left the school. Effectiveness is thought to be something that individual teachers bring with them (or not). The overall effect of turnover depends upon the resulting distribution in effectiveness of individual teachers. If leaving teachers are equally as effective as those who replace them then there should be no net effect of turnover. In such compositional explanations, any turnover effects are driven only by leavers and their replacements. The students of teachers who stay in the same school from one year to the next then are merely bystanders, presumably unaffected by turnover.

However, others have suggested that turnover can have a broader organizational influence that reaches beyond leaving teachers, replacement teachers, and their students. Where turnover is considered to have a disruptive organizational influence, all members of a school community are vulnerable, including staying teachers and their students. In such disruptive accounts of turnover, even when leaving teachers are equally as effective as those who replace them, turnover can still impact
students' achievement. In this section we consider prior literature that suggests a disruptive organizational impact of turnover that may, in turn, influence student achievement.

There exists substantial evidence that staff cohesion and community are related to student engagement and achievement (Bryk, Lee, \& Holland, 1993; Bryk \& Schneider, 2002; Johnson, Berg, Donaldson, 2005; Little, 1982; Louis \& Marks, 1998). According to Bryk and Schneider (2002), the quality of relationships (trust) between teachers, and between teachers and students, predicts student achievement. Likewise, Little (1982) found "patterned norms" of interaction among colleagues that also predict student achievement. When teachers leave schools, previously held relationships and relational patterns are altered. To the degree that turnover disrupts the formation and maintenance of staff cohesion and community, it may also then effect student achievement. Guin (2004) shows that teacher turnover indeed has a negative effect on faculty interactions and school climate. Likewise, recent study by Hanselman et al. (2011) indicates that teacher and principal turnover has a disruptive effect on the "development and maintenance of social resources" (p. 27) - including staff collegiality, community, and trust - in a school. Moreover, these authors found the impact of turnover to be initially detrimental to "high resource" schools and initially beneficial to "low resource" schools. In other words, the disruptive influence of turnover can have either positive or negative effects depending upon a school's initial conditions.

School instructional program coherence has also been shown to predict student achievement (Newman et al., 2001). Since staff turnover presents significant challenges to the successful and coherent implementation of such instructional programs (Guin, 2004), it also may harm student achievement. With leaving teachers goes organizational knowledge important to the effective implementation of such programs (Abelson \& Baysinger, 1984). Moreover, newly hired teachers initially lack essential knowledge and skills to implement an unfamiliar instructional program, so must be brought up to speed before institutional progress can be made. The result in settings with persistent
turnover then is that schools are always starting over rather than making progress on their programmatic agendas.

Turnover has substantial impact on the financial and human resources in districts and schools as well. There are significant financial costs associated with recruiting, hiring, and training new teachers (Barnes et al., 2007). This drains resources that might otherwise be spent on program improvement or working conditions, likely harming schools with historically underserved student populations the most (Barnes et al., 2007; Carroll et al., 2000; Darling-Hammond \& Sykes, 2003). Underserved schools tend to have more persistent turnover so suffer higher costs in keeping their classrooms staffed; moreover, they tend to have fewer resources to begin with, making it more difficult to absorb the cost of turnover or to invest in costly program improvements. Typically new hires in underserved schools are less qualified so require substantially more remediation and often leave before gaining necessary expertise (DarlingHammond \& Sykes, 2003; Carrol et al., 2000). Given these reasons to expect turnover to be especially harmful to historically underserved student populations, this paper looks separately at the effects of turnover in such settings.

Contrary to compositional explanations that assume stayers to be unaffected by turnover, disruptive explanations indicate that stayers may indeed be affected. Because they bear much of the responsibility for mentoring new teachers about school expectations and programs, turnover likely impacts stayers directly (Guin, 2004). Stayers must carry more of the instructional burden and have less professional development resources available to them, as available resources get used up on new hires (Shields et al., 1999/2001). Persistent turnover may then have a debilitating impact on staying teachers and, in turn, their students.

Above we have provided a review of literature that describes many plausible mechanisms - both compositional and disruptive - by which teacher turnover likely effects student achievement. Because prior research has not adequately established a direct, causal link between teacher turnover and
student achievement, however, we may be accounting for a phenomenon even before establishing that it exists. Using a unique identification strategy, and two classes of fixed-effects regression models, this study presents the cleanest estimates to date for a direct effect of teacher turnover on student achievement. After establishing evidence for a direct effect of turnover on student achievement, this paper begins to explore possible mechanisms to account for the observed effect.

Three research questions guide the investigation: What is the average effect of teacher turnover on student achievement? Are the effects different for different kinds of schools? What explains the relationship between teacher turnover and student achievement? To address the latter question, this study explores whether observed effects are compositional or disruptive in nature. The paper proceeds as follows. We first describe the data and methodological approach. We then present the results and conclude with a discussion of the implications of the findings.

Data

This study draws on extensive administrative data from the New York City Department of Education and the New York State Education Department. Analyses focus on approximately 1.1 million observations of $4^{\text {th }}$ and $5^{\text {th }}$ grade students across all New York City elementary schools over ten academic years (2001-2010). ${ }^{2}$ We were able to link student test scores in math and ELA to student, class, school, and teacher characteristics.

Table 1 describes student-year, teacher-year, and school-by-grade-by-year characteristics. About 70 percent of students in $4^{\text {th }}$ and $5^{\text {th }}$ grades in NYC were either black or Hispanic. Over one-third of students had a home language other than English, and 71 percent were on free or reduced priced lunch. Approximately one percent of students had been suspended in the previous year, while nine percent had switched schools since the prior year. Finally, students were absent for an average of approximately 11 days in the previous year.

On average, 73 percent of teachers each year had stayed in the same school from the prior year (stayers). Approximately two percent of $4^{\text {th }}$ and $5^{\text {th }}$ grade teachers had transferred schools within NYC (movers), while 18 percent were first year teachers. The $4^{\text {th }}$ and $5^{\text {th }}$ grade teachers in the district had, on average, eight years of experience. Each $4^{\text {th }}$ and $5^{\text {th }}$ grade within each NYC school had, on average, five teachers, with a range from one to as many as 20 teachers. Figure A plots the distribution of teachers per grade in the sample schools.

Our identification strategy requires measuring school-by-grade level turnover in each year. Such measurement is not entirely straightforward. To illustrate, imagine a $4^{\text {th }}$ grade within School A that had six teachers in year t-1. Due to increasing enrollments, in year there were seven $4^{\text {th }}$ grade teachers. Of these, five were stayers, one a mover, and one a first year teacher. Teacher turnover could be estimated as the proportion of year $t-1$ teachers that were no longer in the $4^{\text {th }}$ grade in School A in year $t(1 / 6=16.7$ percent). On the other hand, turnover could be measured as the proportion of teachers that were new to the school-by-grade in year t-- either first year teachers or movers ($2 / 7=28.6$ percent). The first measure -- "lagged attrition" -- defines turnover as the proportion of teachers in a given grade level in year t-1 who left the school by year t . The second measure -- "proportion new" -- defines turnover as the proportion of teachers in a given grade level who are new (movers or first year teachers) to the school in year t . We used both measures in all analyses to test whether results were robust across them; the distributions for school-by-grade lagged attrition (averaged over 10 years) can be seen in Figure B and for school-by-grade proportion new (averaged over ten years) in Figure C. The measures have similarly shaped distributions, bell shaped with a right skew.

The average teacher turnover rate in each grade in each school in each year was similar for both of the measures we developed: 0.29 for the lagged attrition measure and 0.28 for the proportion new measure. Thus, each year, approximately three out of every ten $4^{\text {th }}$ and $5^{\text {th }}$ grade teachers in NYC left or came to a given grade level in a given school. The two measures were moderately correlated with one
another at the school-grade-year level (r=0.559). Lagged attrition could result from teachers leaving the profession altogether or transferring to another school. This measure does not include the transfer of teachers from one grade to another within the same school. We chose not to include this behavior because, in such cases, the expertise of teachers would remain within the same school. ${ }^{3}$ About one-third of school-by-grades experienced no teacher turnover each year (between 30 percent and 33 percent). On the other hand, each year around four percent of $4^{\text {th }}$ and $5^{\text {th }}$ grade level teams had turnover rates of 100 percent. ${ }^{4}$

Methods

As described above, three questions drive our analyses: What is the average effect of teacher turnover on student achievement? Are the effects different for different kinds of schools? And what explains the relationship between teacher turnover and student achievement?

What is the average effect of teacher turnover on student achievement? Typically teacher turnover is measured at the school level. However, high turnover rates in the $6^{\text {th }}$ grade may have little impact on incoming $4^{\text {th }}$ grade students, especially when the 4th grade level team stays intact. To get a more precise estimate of the effects of turnover, this study examines turnover at the school-by-grade-by-year level, rather than at the school or school-by-year level. Another benefit of examining school-by-grade-by-year level turnover is that we can adjust for school-by-grade or school-by-year level factors that could influence both student achievement and turnover. For example, if the school's principal leaves then the transition could simultaneously affect both turnover and achievement. If we do not measure this effect then our results would be biased, showing an association between turnover and achievement even if no causal relationship exists. Focusing on school-by-grade-by-year level turnover allows us to adjust for school-by-year level factors, both observed and not observed.

For each analysis we use two different estimation strategies to study the effects of school-by grade-by-year level teacher turnover on student achievement. First, we use regression models with school-by-grade fixed effects to leverage variation in turnover across years within the same grade level and school. This allows us to examine whether students within the same grade level and within the same school had better or worse test score gains in a given year, as compared to other years when teacher turnover was at different rates. These models assume that the effects of turnover in the same school and grade level are comparable across years. These models are prone to school-by-year level factors, like bringing in a new principal, that may influence both teacher turnover and student achievement, and thus make such an assumption problematic. All models control for prior student achievement, but we also control for other student, class, school, grade, and teacher characteristics depending on the analysis. Equation 1 summarizes the regression model used for these analyses:

$$
\begin{equation*}
A_{i t g s y}=B_{0}+b_{1} A_{i t g s(y-1)}+b_{2} \text { OtherA }_{i t g s(y-1)}+b_{3} X_{i t g s y}+b_{4} C_{t g s y}+b_{5} S_{s y}+\phi_{y}+v_{g s}+b_{6} T_{g s y}+\varepsilon_{i t g s y} \tag{1}
\end{equation*}
$$

The test performance of individual, i, with teacher, t, in grade, g, in school, s, in time, y, is a function of his/her test performance in that subject, A, and the other subject, OtherA, in the prior year, student background characteristics, X, time varying classroom characteristics, C, time varying school characteristics, S, year fixed effects φ, grade-by-school fixed effects, v, the grade-by-school-by-year turnover measure, T, and an error term, ε.

In our second method of analysis, we use school-by-year, instead of school-by-grade, fixed effects to capitalize on turnover variation across grades within the same year and school. The advantage of the second method is that year-to-year variations - like bringing in a new principal, as described above - cannot explain observed effects; however, the disadvantage is that it assumes turnover rates have comparable effects on student achievement at different grade levels. All models control for prior
student achievement, but we also control for other student, class, school, grade, and teacher characteristics depending on the analysis. Equation 2 describes the second method of analysis:
$\left.A_{i t g s y}=B_{0}+B_{1} A_{i t g s(y-1}\right)+B_{2}$ OtherA $A_{i t g s(y-1)}+B_{3} X_{i t g s y}+B_{4} C_{t g s y}+B_{5} S_{s y}+\phi_{g}+v_{s y}+B_{6} T_{g s y}+\varepsilon_{i t g s y}$

The test performance of individual, i, with teacher, t, in grade, g, in school, s, in time, y, is a function of his/her test performance in that subject, A, and the other subject, Other A, in the prior year, student background characteristics, X, time varying classroom characteristics, C, time varying school characteristics, S, grade fixed effects φ, year-by-school fixed effects, v, the grade-by-school-by-year turnover measure, T, and an error term, ε.

Are the effects of turnover different in different kinds of schools? To better understand the nature of observed effects, we examined whether the relationship between teacher turnover and student achievement varied in different kinds of schools. As described in the introduction, many have suggested turnover to be a particularly pernicious problem in schools with historically underserved student populations, especially given that the turnover rates tend to be higher in these kinds of settings. To test whether the effects of turnover are different in schools with these populations of students we ran models separately in low versus high performing schools, and in low versus high percentage black schools. We did this by constraining our sample only to schools whose students averaged below the test score mean and then reproducing the analyses described above. We then repeated this process with our sample constrained only to schools that had 20 percent or more black students. ${ }^{5}$ For comparison's sake, we also examined schools with students scoring at or above the mean on test scores, and with black student populations of less than 20 percent.

Additionally, during the period of this study, NYC opened a number of new schools, many of which were small and expanding. Given the unique challenges that new schools face, high rates of
teacher turnover are more common in these new schools (Hemphill et al., 2009). National trends also indicate that small schools tend to have higher rates of teacher turnover (Ingersoll, 2001; Ingersoll and Rossi, 1995). We wondered whether the effects of turnover might then be particularly salient in new and small schools in NYC. Moreover, some have suggested school size to be related to staff cohesion and community (Bryk et al., 1999), which, as described in the introduction, predict both teacher turnover and student achievement.

To explore whether the effects of turnover may vary in new and in small schools, we ran models separately for large versus small schools, and for new versus old schools. We chose median values as cutoffs in order to ensure that sample sizes in each group were similar. More specifically we classified "new" schools as not yet existing in 2001 and "old" schools as existing in or prior to 2001, and ran models separately for each group. We then classified "small" schools as having fewer than four teachers per grade level and "big" schools as having four or more teachers per grade level, and ran analyses separately for each group.

What explains the relationship between teacher turnover and student achievement? A described in the introduction, there are multiple potential mechanisms leading to the effects of turnover that we estimate in Equations 1 and 2. For example, turnover may affect achievement because the teachers who replaced those who left were either more or less effective (we refer to this as the "compositional" explanation). Alternatively, even where the arriving and leaving teachers were equally effective, the turnover itself may cause a broader disruption that impacts all students, including students of teachers who did not transition (we refer to this as the "disruption" explanation).

To examine the effect of differentially effective teachers (compositional explanation) we add teacher experience indicator variables for the number of years of experience for each teacher in our data set (leaving out first year teachers as the reference group) to see whether any observed turnover effects are driven by changes in the distribution of teacher experience. We then add to our models an
indicator variable for teachers who migrated from a different school in the previous year to see whether any observed effects are driven by teachers who are new to schools being worse. We also run separately models that control for teachers' average prior value-added to see if the effect is driven by changes in the effectiveness of teachers leaving and entering grade level teams. The drawback to this approach of controlling for measured teacher characteristics is that there may be unmeasured characteristics of teachers that differ between new and remaining teachers that affect student performance.

In order to test whether turnover has a disruptive force on student achievement beyond changing the composition of teacher effectiveness, we rerun our analyses but only for students who had teachers who were in the same grade-by-school group in the prior year (i.e. students of "stayers"). More specifically, we constrained our sample only to teachers (and their students) who had remained in the same grade and school from the previous year (stayers), and estimated the effects of turnover on this sub-population. As described in the introduction, if only compositional, and not disruptive, effects are at work, we should not then see an effect of turnover on the students of stayers. We run these analyses for the models in both Equation 1 and Equation 2. In models with school-grade fixed effects, we compare the effects of turnover on the achievement of students of only stayers in a given grade level and school to the students of stayers in the same grade level and school but in different years. In models with school-year fixed effects, we compare the effects of turnover on the achievement of students of only stayers in a given year and school to the students of stayers in the same year and school but in a different grade level. For comparison's sake, we repeated this strategy by constraining our sample only to those teachers who had been in NYC but migrated from a different school in the previous year (movers), and then by constraining the sample only to teachers (and their students) who were first-year (rookie) teachers.

Results

What is the average effect of teacher turnover on student achievement?

Table 2 describes the results for estimates of the effects of teacher turnover on student achievement when comparing students within the same grade within the same school but in different years (grade-by-school fixed effects models). Model 1 includes year fixed effects as well as school-bygrade fixed effects, while Model 2 adds in student, class, and school-level controls. ${ }^{6}$ Note that each estimate in Table 2 comes from a separate estimation. The estimations vary in their outcome variable (math or ELA) and in their measure of turnover (proportion of new teachers or lagged attrition). The estimated coefficients are negative and significant for test scores in both ELA and math and for all model specifications, suggesting that the students of teachers in the same grade level team in the same school do worse in years where teacher turnover rates are higher, as compared to years with less teacher turnover. Student math scores are 6.1 to 7.9 percent of a standard deviation lower in years when there was 100 percent turnover as compared to years where there was no turnover at all. For a year in which turnover increased by one standard deviation (0.27 for lagged attrition) this would correspond with a decrease in math achievement by approximately 2 percent of a standard deviation. Effect sizes are somewhat smaller in ELA than in math, estimated at between 3.7 and 5.1 percent of a standard deviation decrease.

Across models, estimates were somewhat larger when signaling teacher turnover using the proportion of new teachers to a grade level team as compared to the proportion of teachers who left a grade level team in the prior year. We are not certain why this is the case, but suspect it may be the result of differences in the sensitivity of measures to variation in turnover across years where there was growth or decline in the number of teachers within a particular grade-by-school. To illustrate, Table 3 summarizes three different scenarios - when there is an increase in the number of teachers in a hypothetical $4^{\text {th }}$ grade in a hypothetical School A; when there is a decline in the number of teachers; and
when the number of teachers stays the same. As the table demonstrates, the lagged attrition measure may be less sensitive to changes caused by turnover in growth years. On the other hand, in decline years, the proportion new measure may fail to detect changes due to turnover. In the five-year period we studied in NYC, we found that grade-by-school teams experienced average increases in faculty size in grades 4 and $5{ }^{7}$ this average growth may explain why the lagged attrition estimates were relatively lower. Another possibility is that the "proportion new" measure may be more sensitive to the compositional effect of bringing in new, and likely less experienced and effective, teachers.

Table 4 describes the estimates for models using school-by-year fixed effects instead of school-by-grade fixed effects. Looking across models and measures, the results are similar. The consistently negative and statistically significant estimates again suggest that teacher turnover harms student achievement. More specifically, the results indicate that within the same school and within the same year, students in grade levels that experience 100 percent turnover had lower test scores by 5.6 to 9.4 percent of a standard deviation in math and by 5.0 to 8.5 percent of a standard deviation in ELA, as compared to grade levels with no turnover at all. As with models using school-by-grade fixed effects, estimates were consistently lower when signaling turnover with lagged attrition as compared to the proportion of new faculty.

To get a better sense about the magnitude of the effects, we examined the effects at different quartiles of teacher turnover. Table 5 describes grade-by-school-by-year-level characteristics at different quartiles of teacher turnover. The bottom quartile (least turnover) is comprised of only grade levels in schools that experienced no teacher turnover; in the second quartile an average of 21 percent of teachers left, in the third quartile approximately 41 percent left, and in the fourth quartile over threequarters left. As compared to school-by-grades in the top quartile of turnover, those in the bottom quartile had more high-achieving and Asian students, fewer poor, black, and Hispanic students, and fewer student absences and suspensions.

Table 6 shows the estimates for the effects of teacher turnover on student achievement by quartile of turnover. The first column displays estimates for models employing school-by-year fixed effects, while estimates in the second column come from models with school-by-grade fixed effects. All models control for student, classroom, and school characteristics. Depending on the model and signal for turnover, students experiencing rates of teacher turnover in the second quartile have one to two percent of a standard deviation lower math achievement as compared to students experiencing the least (bottom quartile) teacher turnover. This suggests that reducing teacher attrition rates from one out of five teachers leaving to none corresponds with an increase in student math achievement of one to two percent of a standard deviation. Students in the third quartile are scoring two to four percent of a standard deviation lower, while those in the fourth quartile are scoring four to seven percent of a standard deviation lower. Reducing teacher attrition rates then from approximately forty percent to none corresponds with an increase of about 3 percent of a standard deviation, an amount that other researchers have suggested to be meaningful. As an example, this is the same magnitude as the coefficient on the student indicator variable for being eligible for free or reduced price lunch, our proxy for student poverty. ${ }^{8}$ Given there are about 5 teachers per every grade-by-school, in an average grade level in an average school this would be the difference between a year (or grade) where two teachers left and one where none left. With our identification strategy, we are likely underestimating the true effect of turnover since we are really identifying idiosyncratic turnover - across grades (within a school and year) or across years (within a grade and school). If being in a systematically high turnover grade level and school has additional negative effects we are missing these additional effects with our identification strategy.

Are the effects different for different kinds of schools?

Prior literature suggests that the turnover rates are especially high in schools with more lowperforming and minority students (Scafidi, Stinebrickner, and Sjoquist, 2003; Hanushek, Kain and Rivkin, 2004; Boyd et al., 2010; Boyd et al., 2005). Moreover, it is typically more challenging to fill vacancies in these kinds of schools with qualified teachers (Boyd et al., 2011). Thus, many have argued that the effects of teacher turnover are probably most harmful to students in schools with underserved student populations. However, estimates in the recent study by Hanushek and Rivkin (2010) suggest the opposite to be true -- that turnover may exert a lower cost on schools with higher populations of lowachieving and black students as compared to schools with fewer of these student populations.

In order to examine this matter further, we analyzed whether the effects of teacher turnover were similar or different in schools with more low-achieving and black students as compared to schools with fewer of these student populations (see Methods section for more details). Table 7a presents results for models using school-by-grade fixed effects, while Table 7b presents results for models using school-by-year fixed effects. Across math and ELA, and across measures for teacher turnover, the negative effect of teacher turnover on student achievement was larger in schools with higher proportions of low-achieving and black students.

Tables 8 a and 8 b compare estimates for old (existed in 2001) versus new (did not exist in 2001) schools and for big (four or more teachers per grade level) versus small schools (fewer than four teachers per grade level). Across models, estimates are negative and mostly significant, suggesting that turnover has a harmful effect on student achievement across kinds of schools. While the estimated turnover effects are negative and generally significant in new and small schools, they are larger in magnitude in old and big schools. These results indicate that new school reforms in NYC are not driving the negative effects of turnover described above.

What explains the relationship between teacher turnover and student achievement?

There are many possible mechanisms by which teacher turnover can harm student achievement. As described in the introduction, prior literature often focuses on the relationships between teacher turnover and teacher quality to explain this effect. The assumed theory of action is that teacher turnover changes the average effectiveness of teachers in the schools that, in turn, changes student outcomes. More specifically, the effect of turnover is driven by the relative effectiveness of the teachers who leave a school, as compared to those who replace them. We test this by including in our models two signals for teacher quality - experience and lagged value-added - to test whether changes in teaching experience or prior effectiveness at raising test scores explain the harmful effects of turnover on student achievement that we observe. To measure experience we used indicators variables for each year of experience. Because the first year in a school may be especially difficult, even for experienced teachers, we also added a control for whether the teacher moved from a different school.

Tables 9 a and 9 b show estimates for models examining whether teaching experience and migration explain the effects of teacher turnover on student achievement. We begin with the base model in Model 1, add experience indicators in Model 2, and then add an indicator for whether a teacher is new to the school (mover or first year teacher) in Model 3. Table 9a describes results for models using school-by-grade fixed effects; Table 9b describes models using school-by-year fixed effects. In both tables, Model 2 estimates are consistently lower than those in Model 1 but still statistically significant. These results indicate that changes in teacher experience explain some of the teacher turnover effect on student achievement, although a significant amount of the effect remains unexplained. Compared to Model 2, Model 3 estimates are also somewhat smaller but still statistically significant. These results suggest that teachers who migrated from other schools were, on average, less effective, and that this accounted for some of the harmful effects of teacher turnover on student achievement. ${ }^{9}$ However, Model 3 estimates remained statistically significant indicating other factors,
beyond teaching experience and migration, also explain the effects of teacher turnover on student achievement.

One of the most likely remaining explanatory factors is teachers' prior effectiveness at improving student achievement (Hanushek and Rivkin, 2010). While there is no perfect way of measuring teacher effectiveness, regression-based, value-added measures are increasingly common. We can calculate value-added measures for a subsample of teachers in the sample. ${ }^{10}$ As a result of missing data, our overall sample sizes were reduced substantially - from about 1.1 million student observations to about 850,000 for both math and ELA. Tables 10a and 10b show estimates for models using only the subsample of teachers for whom we have data on prior value-added. Model 1 includes estimates for the effect of teacher turnover on student achievement for this subsample; Model 2 controls for teachers' average prior value-added ${ }^{11}$ to see if prior effectiveness explains any observed effects in Model 1. These tables show that, even with the reduced sample of teachers for whom we have data on prior value-added, the estimates of the effects of teacher turnover on student achievement remain negative and mostly significant (Model 1, "All Schools"), though were somewhat smaller in magnitude. After controlling for teachers' average prior value-added, estimate sizes reduce somewhat though remain statistically significant. These results suggest that changes in teachers' effectiveness explain some of the observed relationship between teacher turnover and student achievement, though an effect remains beyond this compositional explanation.

Because we find the effects of teacher turnover to be especially deleterious in lower-achieving schools, we reproduce the value-added analyses separately in lower-achieving and higher-achieving schools. Tables 10a and 10b shows that, with the reduced sample, the turnover effect is negative and significant in lower-achieving schools, but that there is no significant effect in higher-achieving schools. Moreover, the effect of teacher turnover remains negative and, in most cases, statistically significant
even after controlling for prior value-added. Thus, teachers' prior effectiveness does not appear to explain fully the harmful effects of turnover on student achievement in lower-achieving schools.

That the magnitudes for the effects of turnover are larger (even more negative) before controlling for average value-added suggests the compositional effect of turnover due to changes in the distribution of teacher effectiveness has a net negative effect. On average, students are harmed by the changing composition in teacher effectiveness that results from teacher turnover, primarily in lowerperforming schools. These findings are consistent with studies that suggest underserved schools tend to fill vacancies with relatively less effective teachers.

Given that the distribution in teacher experience, migration, and prior effectiveness do not fully explain the harmful effects of turnover on student achievement, particularly in lower-performing schools, then what else might account for them? It is beyond the scope of this study to identify and test all possible mechanisms by which turnover may harm student achievement. However, one way to begin to identify how turnover impacts student achievement is to examine whether the effects of teacher turnover accrue only to students who have teachers who are new to the grade-level team in their school or whether the effects of turnover are also felt by students whose teachers had remained. If the students of stayers are harmed by teacher turnover, it would cast further doubt on the hypothesis that turnover harms student achievement only through changing the relative effectiveness of the teachers who leave as compared to those that replace them. It would suggest that the rotation of teachers has a disruptive influence beyond just those students of teachers who were coming and going, to somehow negatively impact even the students who were assigned to teachers who stayed in the same school from year to year. To test this, we examined the effects of turnover separately for teachers who were stayers, movers, and rookies (first year) to see the extent to which the students of these groups of teachers experienced the effects of turnover differently. Given prior evidence that the effect of turnover
manifests primarily in lower-achieving schools, we continued to analyze low and high achieving schools separately.

Table 11a shows the results for models using school-by-grade fixed effects while Table 11b shows results for models using school-by-year fixed effects. On the left are estimates for the effects of teacher turnover on math achievement - for all schools, for low-achieving schools, and for highachieving schools; on the right are estimates on ELA achievement organized in the same way. Across models and measures, there is a consistent pattern for stayers - in lower-achieving schools, their students perform significantly worse when turnover is greater; while in higher-achieving schools there is no effect. ${ }^{12}$ For the students of movers, estimates are unstable and vary substantially depending upon the kind of fixed-effect, turnover signal, test subject (math or ELA), and school (low or high achieving). Given that only 2 percent of teachers in our sample are movers, we suspect that the reduced sample size (from 1.1 million to 21,400 observations) and corresponding lack of power likely account for the instability of estimates. The substantially larger standard errors and unusually large magnitudes on some coefficients are consistent with this explanation. Estimates for the effects of turnover on the achievement of students of first year (rookie) teachers are also unstable. In math, estimates trend negative but are only statistically significant when using the "proportion new" turnover signal. In ELA, estimates trend negative when using school-year fixed-effects but trend positive when using schoolgrade fixed effects. As with the mover-only analyses, the substantially reduced sample (from 1.1 million to 180,000 observations) may be responsible for the instability of estimates, but more research is needed to determine if these are real differences.

Discussion

This study finds some of the first empirical evidence for a direct effect of teacher turnover on student achievement. Results demonstrate that teacher turnover has a significant and negative effect
on student achievement in both math and ELA. Moreover, teacher turnover is particularly harmful to the achievement of students in schools with large populations of low-performing and black students.

Much of the existing literature assumes that teacher turnover impacts student achievement by changing the distribution in quality of teachers in schools. That is, if the teachers who leave a school are worse than those who replace them, then turnover will have a net positive effect. In this view, stayers, and their students, are merely bystanders who do not affect and are not affected by turnover. Although this study finds evidence that changes in teacher quality explain some of the effect of turnover on student achievement, the results suggest there may be a disruptive impact of turnover beyond compositional changes in teacher quality. First, results show that turnover has a harmful effect on student achievement, even after controlling for different indicators of teacher quality, especially in lower-performing schools. Also, we find that turnover negatively affects the students of stayers - those who remain in the same school from one year to the next. Thus, turnover must have an impact beyond simply whether incoming teachers are better than those they replaced - even the teachers outside of this redistribution were somehow harmed by it.

Although this study does not identify the specific mechanism by which turnover harms students, it provides guidance on where to look. The findings indicate that turnover has a broader, harmful influence on student achievement since it can reach beyond just those students of teachers who left or of those that replaced them. Any explanation for the effect of turnover must possess these characteristics. One possibility is that turnover negatively affects collegiality or relational trust among faculty; or perhaps turnover results in loss of institutional knowledge among faculty that is critical for supporting student learning. More research is needed to identify the specific mechanism.

This study makes important methodological contributions. First, finding evidence for a disruptive influence beyond the distribution in quality of teachers calls into question research that draws inferences about the effects of teacher turnover based solely on such compositional explanations.

Future studies need to take a more comprehensive view on the mechanisms by which teacher turnover may influence student achievement. Second, we introduce a unique identification strategy and modeling approach that improves upon prior efforts to estimate the effects of teacher turnover on student achievement. The effects of turnover are typically analyzed at the school-level, an approach that makes the questionable assumption that the effects of turnover are comparable across different kinds of schools. Instead, we utilize two innovative modeling approaches that do not make this assumption. The first identifies turnover variation across years within the same grade level and within the same school to examine whether students had better or worse test score gains in a given year, as compared to other years when teacher turnover was at different rates. The second identifies turnover variation across grade levels within the same year and within the same school to examine whether students in grade levels with higher or lower turnover rates also had higher or lower achievement gains. Though an improvement over school-level analyses, both of these methods also make questionable assumptions. The former assumes the effects of turnover rates within the same grade and school are comparable across years; the latter assumes that turnover effects within the same school and year are comparable across grade levels. Despite concerns over potential bias introduced by these assumptions, findings were similar across methodological approaches, suggesting our approach to be valid and that we have detected a true effect.

Finally, the findings of this study have policy implications. Though there may be cases where turnover is actually helpful to student achievement, on average, it is harmful. This indicates that schools would benefit from policies aimed to keep grade level teams in tact over time. One possibility might be to introduce incentive structures to retain teachers that might leave otherwise. Implementing such policies may be especially important in schools with large populations of low-performing and black students, where turnover has the strongest negative effect on student achievement.

Notes

${ }^{1}$ On the other hand, they found that teachers with better pre-service qualifications (LAST scores, competitiveness of undergraduate institution) were more likely to apply for transfer.
${ }^{2}$ Altogether there were $1,102,831$ student observations in ELA and $1,103,085$ in math.
${ }^{3}$ We also ran models that included indicators for whether teachers switched grade levels. Results were similar suggesting the grade-level switching does not account for the effects of grade-level turnover on student achievement.
${ }^{4}$ We use many classroom and school-level characteristics as controls in the regression models described below. Appendix Table 1 describes these variables used as school and classroom controls in analyses.
${ }^{5}$ We used 20 percent as the cutoff score as this was close to the median value. This assured we had similar number of observations in each group.
${ }^{6}$ Table 1 describes the student controls used in these models; Appendix Table 1 describes the classroom and school controls.
${ }^{7}$ We examined grade-by-school level growth by creating measure for the difference between years in the number of teachers per grade level per school: Difference = Number of teachers (n) - Number of teachers ($\mathrm{n}-1$). By averaging difference scores across years and school-by-grade levels we calculated a mean difference score of about 0.3 for our sample. This suggests an average yearly growth of 0.3 teachers within a grade level within a school.
${ }^{8}$ Here we use the coefficient on free or reduced priced lunch eligibility from the same models used to estimate the effect of turnover on student achievement. These models control for prior achievement, as well as other student characteristics, that captures much of the effect of qualifying for free and reduced lunch, so estimates are smaller than they would be without such controls. That said, our estimates for the effects of teacher turnover on student achievement would also increase in magnitude were we not to control for prior achievement or other student characteristics. The effects of teacher turnover in previous years of schooling, for example, will be captured in prior achievement scores. Since we are examining the effects of idiosyncratic turnover, rather than looking at the cumulative effects of turnover, it seems more appropriate to compare the magnitudes of our estimates for turnover to estimates on free or reduced lunch that include controls for prior achievement and other student controls.
${ }^{9}$ That the magnitude for turnover estimates decrease in Models 2 and 3 suggesting that the effects of turnover resulting from changing distributions in teacher experience and migration have negative net effects.
${ }^{10}$ All first year teachers are dropped from this analysis because we do not have student test score data in prior years. For experienced teachers we were unable to estimate value-added for all prior years. To keep our sample as large as possible we decided to use the average of all prior value added estimates as a signal for prior effectiveness. The likelihood of having the data necessary to calculate any value-added estimate increases with experience. As a result, teachers for whom we had prior value-added estimates had substantially more experience (9.4 years), on average, than did teachers for whom we had no prior value-added estimates (5.0 years). We also found that a smaller percentage (55 percent) of teachers in the value-added sample worked in low-performing schools than did the no value-added sample (65 percent). Since less experienced teachers are more likely to work in low-performing schools, differences in average experience likely explains the observed differences between groups in the proportion working in low-performing schools.
${ }^{11}$ A teacher's average prior value added is the mean of all of his/her prior value added scores.
${ }^{12}$ One possible explanation for this result is that principals assign more difficult students to stayers rather than to rookies or migrating teachers. We try to account for this possibility in our modeling approach by controlling for prior achievement and prior suspension records among many other observable student characteristics. Even so, we acknowledge the possibility that such sorting may be occurring on other non-observable student characteristics. Furthermore, we tested whether the effect of turnover on the students of stayers may depend upon. As one of our reviewers speculated, more experienced teachers may be better able to "weather" the effects of turnover. To test this we re-ran analyses separately for stayers with five or fewer years of experience and for stayers with more than five years of experience. Estimates were similar for these two groups and are available upon request from the authors. These results indicate that more experienced stayers were no better or worse at weathering the effects than less experienced stayers.

References

Abelson, M. A., \& Baysinger, B. D. (1984). Optimal and dysfunctional turnover: Toward an organizational level model. The Academy of Management Review, 9(2), 331-341.

Boyd, D., Lankford, H., Loeb, S., Ronfeldt, M., \& Wyckoff, J. (2011). The role of teacher quality in retention and hiring: Using applications-to-transfer to uncover preferences of teachers and schools. Journal of Policy and Management, 30(1), 88-2011.

Boyd, D., Lankford, H., Loeb, S., Ronfeldt, M., \& Wyckoff, J. (2010). The effects of school neighborhoods on teacher career decisions. Working paper downloaded from: http://www.teacherpolicyresearch.org/portals/1/pdfs/School\ Neighborhoods\ Teacher\% 20Retention.pdf

Boyd, D., Lankford, H., Loeb, S., \& Wyckoff, J. (2005). Explaining the short careers of high-achieving teachers in schools with low-performing students. American Economic Review, 95(2), 166-171.

Barnes. G., Crowe, E., \& Schaefer, B. (2007). The costs of turnover in five districts. A pilot study. Washington, D.C.: National Commission on Teaching and America's Future.

Bryk, A. S., Lee, V. E., \& Holland, P. B. (1993). Catholic schools and the common good. Cambridge, MA: Harvard University Press.

Bryk, A.S. \& Schneider, B. (2002). Trust in schools: A core resource for improvement. New York: Russell Sage Foundation.

Carroll, S., Reichardt, R. \& Guarino, C. (2000). The distribution of teachers among California's school districts and schools. Santa Monica, CA: RAND Corporation.

Clotfelter, C. T., Ladd, H. F., Vigdor, J. L., \& Wheeler. J. (2007). High-poverty schools and the distribution of teachers and principals. CALDER Working Paper 1. Washington, DC: The Urban Institute.

Darling-Hammond, L. \& Sykes, G. (2003). Wanted: A national teacher supply policy for education: The right way to meet the "Highly Qualified Teacher" challenge. Education Policy Analysis Archives, 11(33). Retrieved December 8, 2011 from http://epaa.asu/epaa/v11n33/.

Goldhaber, D., Gross, B., Player, D. (2007). Are public schools really losing their "best"? Assessing the career transitions of teachers and their implications for the quality of the teacher workforce. Washington, D.C.: National Center for Analysis of Longitudinal Data in Education Research.

Guin, K. (2004). Chronic teacher turnover in urban elementary schools. Educational Evaluation and Policy Analysis, 12(42), 1-25.

Hanselman, P., Grigg, J., Bruch, S., \& Gamoran, A. (2011). The consequences of principal and teacher turnover for school social resources. Working paper downloaded on December 11, 2011 from http://ssc.wisc.edu/~sbruch/pdf/Hanselman.et.al.2011.social.resources.pdf.

Hanushek, E.A., Kain, J.F. \& Rivkin, S.G. (1999). Do higher salaries buy better teachers? Working paper

No. 7082. Cambridge, MA: National Bureau of Economic Research.
Hanushek, E., Kain, J., \& Rivkin, S. (2004). Why public schools lose teachers. Journal of Human Resources, 39(2), 326-54.

Hanushek, E. \& Rivkin, S. (2010) Constrained job matching: Does teacher job search harm disadvantaged urban schools? Working paper No. 15816. Cambridge, MA: National Bureau of Economic Research.

Hemphill, C., Nauer, K., Zelon, H., \& Jacobs, T. (2009). The new marketplace: How small-school reforms and school choice have reshaped New York City's High Schools. New York: The New School Center for New York City Affairs.

Ingersoll, R. (2001). Teacher turnover and teacher shortages: An organizational analysis. American Educational Research Journal, 38(3), 499-534.

Ingersoll, R. \& Rossi, R. (1995). Which types of schools have the highest teacher turnover? Washington, D.C.: National Center for Education Statistics (Policy Brief 95-778).

Jackson, K. (2010). Match quality, worker productivity, and worker mobility: Direct evidence from teachers. Working paper No. 15990. Cambridge, MA: National Bureau of Economic Research.

Johnson, S.M., Berg, J.H., \& Donaldson, M.L. (2005). Who stays in teaching and why: A review of the literature on teacher retention. Cambridge, MA: Harvard Graduate School of Education. Retrieved December 5, 2010 from http://assets.aarp.org/www.aarp.org/articles/NRTA/Harvard report.pdf.

Little, J. W. (1982). Norms of collegiality and experimentation: Workplace conditions of school success. American Educational Research Journal, 19(3), 325-340.

Louis, K.S., \& Marks, H.M. (1998). Does professional community affect the classroom? Teachers' work and student experiences in restructuring schools. American Journal of Education, 106, 532-575.

Murnane, R. J. (1984). Selection and survival in the teacher labor market. The Review of Economics and Statistics, 66(3), 513-518.

Newman, F., Smith, B., Allensworth, E., Bryk, A. S. (2001). School instructional program coherence: Benefits and challenges. Chicago, IL: Consortium on Chicago School Research.

Scafidi, B., Stinebrickner, T., \& Sjoquist, D. L. (2003). The relationship between school characteristics and teacher mobility. Working paper, Georgia State University.

Shields, P. M., Esch, C., Humphrey, D. C., Young, V. M., Gaston, M., \& Hunt, H. (1999). The status of the teaching profession: Research findings and policy recommendations. A report to the Teaching and California's Future Task Force. Santa Cruz, CA: The Center for the Future of Teaching and Learning.

Shields, P. M., Humphrey, D. C., Wechsler, M. E., Riel, L. M., Tiffany-Morales, J., Woodworth, K., Youg, V. M., \& Price, T. (2001). The status of the teaching profession 2001. Santa Cruz, CA: The Center for the Future of Teaching and Learning.

Figures

FIGURE A: Distribution of Number of Teachers per School-by-Grade

FIGURE B: Distribution of "Lagged Attrition" Turnover Measure

FIGURE C: Distribution of "Proportion New" Turnover Measure

Tables

Table 1: Student, Teacher, and School-by-Grade Characteristics

Table 1: Student, Teacher, and School-by-Grade Characteristics	
STUDENT CHARACTERISTICS	Mean
Proportion female	0.51
Proportion Hispanic	0.37
Proportion Black	0.33
Proportion Asian	0.14
Proportion Other Ethnic	0.00
proportion Caucasian	0.16
Proportion Free Lunch	0.64
Proportion Reduced Lunch	0.07
Proportion Home Language English	0.62
Proportion Suspended in Prior Year	0.01
Proportion Changing Schools from Prior Year	0.09
Average Number of Absences in Prior Year	10.71 (10.05)
Grade 4 Observations (Student-Year)	553,380
Grade 5 Observations (Student-Year)	549,705
Observations (Student-Year)	1,103,085
TEACHER-YEAR CHARACTERISTICS	Mean
Experience	8.25 (7.24)
Proportion Stayers	0.73
Proportion Movers	0.02
Proportion First Years	0.18
Proportion Unknown Status	0.07
Observations (Teacher-Year)	53,290
GRADE-BY-YEAR-BY SCHOOL CHARACTERISTICS	Mean
Teachers	4.66 (2.22)
Turnover Rate (Lagged Attrition)	0.29 (0.27)
Zero Lagged Attrition	0.30 (0.46)
Total Lagged Attrition	0.04 (0.20)
Turnover Rate (Proportion New to School)	0.28 (0.26)
Zero New to School	0.33 (0.47)
Total New to School	0.04 (0.19)
Observations (School-Grade-Year)	13,387

Table 2: Estimates of the Effects of Teacher Turnover on Student Achievement, Using School-By-Grade Fixed Effects

Test	Turnover Measure	Model 1	Model 2
Math	Lagged Attrition	$-0.065^{* *}$	$-0.061^{* *}$
		(0.006)	(0.006)
	Proportion New To School	$-0.079^{* *}$	$-0.076^{* *}$
		(0.006)	(0.006)
ELA	Lagged Attrition		
		$-0.039^{* *}$	$-0.037^{* *}$
	Proportion New To School	(0.006)	(0.006)
		$-0.051^{* *}$	$-0.046^{* *}$
		(0.006)	(0.006)
	School-By-Grade Fixed Effects	x	x
	Year Indicators	x	
	Student, Class, School Controls		x
*** $p<0.001, * * p<0.01, * p<0.05,+p<0.1 ;$ Standard errors in parentheses			

Table 3: Examining Measures of Turnover in Growth, Decline, and Constant Years

Hypothetical: Grade 4 in School A	Example	Turnover Rate Using Lagged Attrition (\# who left in 04-05) / (total \# in 04-05)	Turnover Rate Using Proportion New (\# new in 05-06) / (total \# in 05-06)
Growth: Increase in Number of Teachers	$\begin{aligned} & \text { 2004-05: } 6 \text { teachers } \\ & \text { 2005-2006: } 7 \text { teachers } \\ & \text { (6 stayers, } 1 \text { mover) } \end{aligned}$	$\begin{aligned} & \text { Turnover Rate }=0 / 6 \\ & \text { Turnover Rate }=0 \end{aligned}$	$\begin{aligned} & \text { Turnover Rate }=1 / 7 \\ & \text { Turnover Rate }=0.14 \end{aligned}$
Decline: Decrease in Number of Teachers	2004-05: 7 teachers 2005-2006: 6 teachers (6 stayers)	Turnover Rate $=1 / 7$ Turnover Rate $=0.14$	$\begin{aligned} & \text { Turnover Rate }=0 / 6 \\ & \text { Turnover Rate }=0 \end{aligned}$
Constant: Number of Teachers is Constant	2004-05: 6 teachers 2005-2006: 6 teachers (5 stayers, 1 mover)	Turnover Rate $=1 / 6$ Turnover Rate $=0.17$	$\begin{aligned} & \text { Turnover Rate }=1 / 6 \\ & \text { Turnover Rate }=0.17 \end{aligned}$

Table 4: Estimates of Effects of Teacher Turnover on Student Achievement, Using School-By-Year Fixed Effects

Test	Turnover Measure	Model 1	Model 2
Math	Lagged Attrition	-0.057**	-0.056**
		(0.007)	(0.007)
	Proportion New To School	-0.094**	-0.093**
		(0.008)	(0.007)
ELA	Lagged Attrition	-0.050**	-0.051**
		(0.007)	(0.007)
	Proportion New To School	-0.085**	-0.084**
		(0.007)	(0.007)
	School-By-Year Fixed Effects	x	x
	Grade Indicators	x	x
	Student, Class, School Controls		x

${ }^{* * *} p<0.001,{ }^{* *} p<0.01,{ }^{*} p<0.05,+p<0.1$; Standard errors in parentheses

Table 5: School-Grade-Year Level Descriptive Statistics by Quartile of Lagged Attrition

Variable	Quartile 1	Quartile 2	Quartile 3	Quartile 4
Lagged Attrition	0.00	0.21	0.41	0.77
Math Test Score (standardized)	0.18	0.10	0.04	-0.10
Proportion Free Lunch	0.60	0.65	0.66	0.70
Proportion Hispanic	0.33	0.37	0.38	0.40
Proportion Black	0.31	0.33	0.36	0.42
Proportion Asian	0.14	0.14	0.11	0.07
Proportion "Other" Race/Ethnicity	0.00	0.00	0.00	0.01
Proportion Female	0.51	0.51	0.51	0.52
Lagged Number of Absences	10.56	10.76	11.27	12.09
Lagged Proportion Suspended	0.01	0.01	0.01	0.02

Table 6a: Estimates of Effects of Teacher Turnover on Student Achievement in Math by Quartile of Teacher Turnover (Bottom Quartile is Reference Group)

Turnover Measures	Model 1	Model 2
Lagged Attrition Q2	$-0.023^{* *}$	$-0.011^{* *}$
	(0.005)	(0.004)
Lagged Attrition Q3	$-0.024^{* *}$	$-0.024^{* *}$
Lagged Attrition Q4	(0.004)	(0.004)
	$-0.047^{* *}$	$-0.044^{* *}$
Proportion New Q2	(0.006)	(0.005)
		-0.005
Proportion New Q3	$-0.015^{* *}$	(0.004)
	(0.005)	$-0.030^{* *}$
Proportion New Q4	$-0.036^{* *}$	$-0.004)$
	(0.004)	$-0.049^{* *}$
Student, Class, School Controls	$-0.068^{* *}$	(0.005)
School-by-Year Fixed Effects	(0.006)	x
Grade Indicators	x	x
School-by-Grade Fixed Effects	x	x
Year Indicators		x
$* * *<0.001, * * p<0.01, * p<0.05,+p<0.1 ;$ Standard errors in $p a r e n t h e s e s$		

Table 6b: Estimates of Effects of Teacher Turnover on Student Achievement in ELA by Quartile of Teacher Turnover (Bottom Quartile is Reference Group)

Turnover Measures	Model 1	Model 2
Lagged Attrition Q2	-0.021**	-0.007+
	(0.005)	(0.004)
Lagged Attrition Q3	-0.029**	-0.021**
	(0.004)	(0.004)
Lagged Attrition Q4	-0.038**	-0.023**
	(0.006)	(0.005)
Proportion New Q2	-0.019**	-0.001
	(0.005)	(0.004)
Proportion New Q3	-0.039**	-0.018**
	(0.004)	(0.003)
Proportion New Q4	-0.059**	-0.028**
	(0.006)	(0.005)
Student, Class, School Controls	x	x
School-by-Year Fixed Effects	x	
Grade Indicators	x	
School-by-Grade Fixed Effects		x
Year Indicators		x

[^0]Table 7a: Estimates of Effects of Teacher Turnover on Student Achievement at Different Kinds of Schools (achievement and race), Using School-By-Grade Fixed Effects

Test	Turnover Measure	High Ach.	Low Ach.	Low Black	High Black
Math	Lagged Attrition				-0.069**
		(0.010)	(0.008)	(0.009)	(0.008)
	Proportion New	-0.050**	-0.095**	$-0.057 * *$	$-0.091 * *$
		(0.010)	(0.008)	(0.010)	(0.008)
ELA	Lagged Attrition	-0.036**	$-0.041 * *$	-0.035**	$-0.040^{* *}$
		(0.010)	(0.007)	(0.009)	(0.008)
	Proportion New	-0.028**	-0.063**	-0.025**	-0.065**
		(0.010)	(0.007)	(0.009)	(0.008)
	School-By-Grade Fixed Effects	x	x	x	x
	Year Indicators	x	x	x	x
	Student, Class, School Controls	x	x	x	x

${ }^{* * *} p<0.001,{ }^{* *} p<0.01,{ }^{*} p<0.05,+p<0.1$; Standard errors in parentheses

Table 7b: Estimates of Effects of Teacher Turnover on Student Achievement at Different Kinds of Schools (achievement and race), Using School-By-Year Fixed Effects

Test	Turnover Measure	High Ach.	Low Ach.	Low Black	High Black
Math	Lagged Attrition	$-0.046^{* *}$	$-0.065^{* *}$	$-0.050^{* *}$	$-0.061^{* *}$
		(0.011)	(0.009)	(0.011)	(0.010)
	Proportion New	$-0.066^{* *}$	$-0.119^{* *}$	$-0.079^{* *}$	$-0.105^{* *}$
		(0.012)	(0.010)	(0.011)	(0.010)
ELA	Lagged Attrition	$-0.042^{* *}$	$-0.058^{* *}$	$-0.044^{* *}$	$-0.057^{* *}$
		(0.011)	(0.009)	(0.010)	(0.009)
	Proportion New	$-0.071^{* *}$	$-0.100^{* *}$	$-0.063^{* *}$	$-0.101^{* *}$
		(0.012)	(0.009)	(0.011)	(0.010)
	School-By-Grade Fixed Effects	x	x	x	x
	Year Indicators	x	x	x	x
	Student, Class, School Controls	x	x	x	x

[^1]Table 8a: Estimates of Effects of Teacher Turnover on Student Achievement at Different Kinds of Schools (age and size), Using School-By-Grade Fixed Effects

Test	Turnover Measure	New	Old	Small	Big
Math	Lagged Attrition	$-0.063+$	$-0.061^{* *}$	$-0.052^{* *}$	$-0.070^{* *}$
		(0.032)	(0.006)	(0.008)	(0.009)
	Proportion New	$-0.056+$	$-0.076^{* *}$	$-0.057^{* *}$	$-0.097^{* *}$
		(0.031)	(0.006)	(0.008)	(0.009)
ELA	Lagged Attrition	-0.015	$-0.038^{* *}$	$-0.035^{* *}$	$-0.040^{* *}$
		(0.029)	(0.006)	(0.008)	(0.009)
	Proportion New	-0.006	$-0.047^{* *}$	$-0.043^{* *}$	$-0.049^{* *}$
		(0.027)	(0.006)	(0.008)	(0.009)
	School-By-Grade Fixed Effects	x	x	x	x
	Year Indicators	x	x	x	x
	Student, Class, School Controls	x	x	x	x

*** $p<0.001, *^{* *} p<0.01,{ }^{*} p<0.05,+p<0.1$; Standard errors in parentheses

Table 8b: Estimates of Effects of Teacher Turnover on Student Achievement at Different
Kinds of Schools (age and size), Using School-By-Year Fixed Effects

Test	Turnover Measure	New	Old	Small	Big
Math	Lagged Attrition	$-0.120^{* *}$	$-0.054^{* *}$	$-0.039^{* *}$	$-0.075^{* *}$
		(0.035)	(0.007)	(0.009)	(0.011)
	Proportion New	$-0.128^{* *}$	$-0.091^{* *}$	$-0.070^{* *}$	$-0.117^{* *}$
		(0.037)	(0.008)	(0.010)	(0.011)
ELA	Lagged Attrition	-0.079^{*}	$-0.050^{* *}$	$-0.042^{* *}$	$-0.062^{* *}$
		(0.040)	(0.007)	(0.009)	(0.011)
	Proportion New	-0.041	$-0.085^{* *}$	$-0.071^{* *}$	$-0.100^{* *}$
		(0.037)	(0.007)	(0.009)	(0.011)
	School-By-Grade Fixed Effects	x	x	X	x
	Year Indicators	x	x	X	x
	Student, Class, School Controls	x	x	X	x

${ }^{* * *} p<0.001,{ }^{* *} p<0.01,{ }^{*} p<0.05,+p<0.1$; Standard errors in parentheses

Table 9a : Examining Whether Teacher Experience and Migration Explains Effects of Turnover on Student Achievement, Using School-by-Grade Fixed Effects

Test	Turnover Measure	Model 1	Model 2	Model 3
Math	Lagged Attrition	-0.061**	-0.043**	-0.041**
		(0.006)	(0.006)	(0.006)
	Proportion New To School	$-0.076 * *$	$-0.048^{* *}$	-0.045**
		(0.006)	(0.006)	(0.006)
ELA	Lagged Attrition	-0.037**	-0.020**	-0.019**
		(0.006)	(0.006)	(0.006)
	Proportion New To School	-0.046**	-0.019**	-0.018**
		(0.006)	(0.006)	(0.006)
	School-By-Grade Fixed Effects	x	X	x
	Year Indicators	x	X	x
	Student, Class, School Controls	x	X	x
	Experience Indicators		X	x
	Mover Indicator			x

*** $p<0.001,{ }^{* *} p<0.01,{ }^{*} p<0.05,+p<0.1$; Standard errors in parentheses

Table 9b : Examining Whether Teacher Experience and Migration Explains Effects of Turnover on Student Achievement, Using School-by-Year Fixed Effects

Test	Turnover Measure	Model 1	Model 2	Model 3
Math	Lagged Attrition			
		(0.007)	(0.007)	(0.007)
	Proportion New To School	$-0.093 * *$	-0.065**	$-0.062^{* *}$
		(0.007)	(0.008)	(0.008)
ELA	Lagged Attrition	$-0.051^{* *}$	$-0.034^{* *}$	$-0.033^{* *}$
		(0.007)	(0.007)	(0.007)
	Proportion New To School	-0.084**	$-0.056^{* *}$	-0.054**
		(0.007)	(0.007)	(0.007)
	School-By-Year Fixed Effects	x	x	x
	Grade Indicators	x	x	x
	Student, Class, School Controls	x	x	x
	Experience Indicators		x	x
	Mover Indicator			x

${ }^{* * *} p<0.001,{ }^{* *} p<0.01,{ }^{*} p<0.05,+p<0.1$; Standard errors in parentheses

TABLE 10a: Estimating Whether Prior Value-Added Explains Effects of Teacher Turnover, School-by-Grade Fixed Effects

Test	Turnover Measure	All Schools		Low Performing		High Performing	
		Model 1	Model 2	Model 1	Model2	Model 1	Model 2
Math	Lagged Attrition	$\begin{gathered} -0.036^{* *} \\ (0.007) \end{gathered}$	$\begin{gathered} -0.027^{* *} \\ (0.007) \end{gathered}$	$\begin{gathered} -0.048^{* *} \\ (0.009) \end{gathered}$	$\begin{gathered} -0.036^{* *} \\ (0.009) \end{gathered}$	$\begin{gathered} -0.019+ \\ (0.011) \end{gathered}$	$\begin{aligned} & -0.015 \\ & (0.011) \end{aligned}$
	Proportion New	$\begin{gathered} -0.028^{* *} \\ (0.007) \end{gathered}$	$\begin{gathered} -0.021^{* *} \\ (0.007) \end{gathered}$	$\begin{gathered} -0.051 * * \\ (0.009) \end{gathered}$	$\begin{gathered} -0.042^{* *} \\ (0.009) \end{gathered}$	$\begin{aligned} & -0.000 \\ & (0.011) \end{aligned}$	$\begin{gathered} 0.003 \\ (0.011) \end{gathered}$
ELA	Lagged Attrition	$\begin{gathered} -0.020 * * \\ (0.007) \end{gathered}$	$\begin{aligned} & -0.017 * \\ & (0.007) \end{aligned}$	$\begin{gathered} -0.030^{* *} \\ (0.008) \end{gathered}$	$\begin{gathered} -0.027^{* *} \\ (0.008) \end{gathered}$	$\begin{aligned} & -0.010 \\ & (0.011) \end{aligned}$	$\begin{aligned} & -0.008 \\ & (0.011) \end{aligned}$
	Proportion New	$\begin{aligned} & -0.005 \\ & (0.007) \end{aligned}$	$\begin{aligned} & -0.002 \\ & (0.007) \end{aligned}$	$\begin{gathered} -0.028^{* *} \\ (0.008) \end{gathered}$	$\begin{gathered} -0.023^{* *} \\ (0.008) \end{gathered}$	$\begin{aligned} & 0.019+ \\ & (0.011) \end{aligned}$	$\begin{aligned} & 0.021+ \\ & (0.011) \end{aligned}$
	School-by-Grade Fixed Effects	x	x	x	x	x	x
	Year Indicators	x	x	x	x	x	x
	Student, Class, School Controls	x	x	x	x	x	x
Average Prior Value-Added			x		x		x

*** $p<0.001$, ** $^{*} p<0.01,{ }^{*} p<0.05,+p<0.1$; Standard errors in parentheses

TABLE 10b: Estimating Whether Prior Value-Added Explains Effects of Teacher Turnover, School-by-Year Fixed Effects

Turnover Measure	All Schools		Low Performing		High Performing	
	$\underline{\text { Model 1 }}$	$\underline{\text { Model 2 }}$	$\underline{\text { Model 1 }}$	$\underline{\text { Model2 }}$	$\underline{\text { Model 1 }}$	$\underline{\text { Model 2 }}$
Lagged Attrition	$-0.029^{* *}$	$-0.014+$	$-0.042^{* *}$	-0.023^{*}	-0.017	-0.005
	(0.009)	(0.008)	(0.012)	(0.010)	(0.013)	(0.011)
Proportion New	$-0.031^{* *}$	-0.017^{*}	$-0.065^{* *}$	$-0.044^{* *}$	0.002	0.011
	(0.009)	(0.008)	(0.012)	(0.010)	(0.014)	(0.012)
Lagged Attrition	$-0.028^{* *}$	-0.019^{*}	$-0.036^{* *}$	$-0.026^{* *}$	-0.019	-0.013
	(0.008)	(0.008)	(0.010)	(0.010)	(0.013)	(0.012)
Proportion New	$-0.036^{* *}$	$-0.023^{* *}$	$-0.055^{* *}$	$-0.038^{* *}$	-0.019	-0.009
	(0.009)	(0.008)	(0.011)	(0.010)	(0.014)	(0.012)
School-by-Year Fixed Effects		x	x	x	x	x
Grade Indicators	x	x	x	x	x	x
Student, Class, School Controls	x	x	x	x	x	x
Average Prior Value-Added		x		x	x	

[^2]TABLE 11a: Examining the Effect of Teacher Turnover on Stayers, Movers, and Leavers in High and Low Achieving Schools (school-by-grade fixed effects)

Teacher Type	Turnover Measure	Math			ELA		
Stayers Only	Lagged Attrition	All Schools	Low Ach.	High Ach.	All Schools	Low Ach.	High Ach.
		-0.027**	-0.039**	-0.013	-0.017*	-0.028**	-0.006
		(0.007)	(0.010)	(0.012)	(0.007)	(0.009)	(0.012)
	Proportion New	-0.013	-0.041**	0.019	0.012	-0.014	0.039**
		(0.008)	(0.010)	(0.012)	(0.007)	(0.009)	(0.012)
Movers Only	Lagged Attrition	-0.050	-0.062	-0.060	0.002	0.124*	-0.078
	Proportion New	(0.038)	(0.052)	(0.059)	(0.045)	(0.054)	(0.061)
		-0.060	-0.125*	0.044	-0.099*	-0.114*	-0.086
		(0.042)	(0.053)	(0.065)	(0.047)	(0.053)	(0.072)
1st Years Only	Lagged Attrition	-0.014	-0.005	-0.025	0.022*	0.027*	0.010
		(0.012)	(0.015)	(0.019)	(0.010)	(0.013)	(0.017)
	Proportion New	-0.032*	-0.031+	-0.023	0.012	-0.007	0.047*
		(0.014)	(0.018)	(0.023)	(0.012)	(0.015)	(0.022)
	School-by-Grade FE	x	X	x	x	x	x
	Year Indicators	x	X	x	x	x	x
	Student, School, Class Controls	x	X	x	x	x	x

${ }^{* * *} p<0.001,{ }^{* *} p<0.01,{ }^{*} p<0.05,+p<0.1$; Standard errors in parentheses
Note: Models estimating the effects of turnover on the students of stayers, movers, and first year teachers were run separately for each group

TABLE 11b: Examining the Effect of Teacher Turnover on Stayers, Movers, and Leavers in High and Low Achieving Schools (school-by-year fixed effects)

Teacher Type	Turnover Measure	Math			ELA		
Stayers Only	Lagged Attrition	All Schools	Low Ach.	High Ach.	All Schools	Low Ach.	High Ach.
		-0.028**	-0.038**	-0.018	-0.034**	-0.041**	-0.025+
		(0.009)	(0.012)	(0.013)	(0.009)	(0.011)	(0.014)
	Proportion New	-0.021*	-0.060**	0.016	-0.029**	-0.053**	-0.008
		(0.010)	(0.013)	(0.015)	(0.009)	(0.012)	(0.015)
Movers Only	Lagged Attrition	0.157+	0.145	-0.096	0.020	$0.143+$	-0.572*
		(0.093)	(0.090)	(0.188)	(0.100)	(0.077)	(0.248)
	Proportion New	0.218*	0.224*	-0.124	0.062	0.164	-0.245+
		(0.097)	(0.096)	(0.160)	(0.092)	(0.111)	(0.148)
1st Years Only	Lagged Attrition	-0.009	-0.013	0.009	-0.022	-0.021	-0.019
		(0.017)	(0.020)	(0.030)	(0.017)	(0.020)	(0.028)
	Proportion New	$-0.078 * *$	$-0.095^{* *}$	-0.043	-0.095**	-0.107**	-0.067
		(0.024)	(0.028)	(0.043)	(0.021)	(0.024)	(0.041)
	School-by-Grade FE Year Indicators	x	x	x	x	x	x
		x	x	x	x	x	x
	Student, School, Class Controls	x	x	x	x	x	x

${ }^{* * *} p<0.001,{ }^{* *} p<0.01,{ }^{*} p<0.05,+p<0.1$; Standard errors in parentheses
Note: Models estimating the effects of turnover on the students of stayers, movers, and first year teachers were run separately for each group

APPENDIX

Appendix Table 1: Class and School-Level Controls

Class-Level Averages	Mean	SD
Class Size	24.77	4.78
Proportion Other Ethnic	0	0.02
Proportion Hispanic	0.36	0.28
Proportion Black	0.33	0.33
Proportion Asian	0.14	0.20
Proportion Home Language English	0.61	0.28
Proportion Free Lunch	0.61	0.30
Lagged Absences	10.88	3.96
Lagged Suspensions	0.02	0.06
Lagged Standardized ELA Scores	0.1	0.60
Lagged Standardized Math Scores	0.13	0.58
Standard Deviation of Lagged ELA Scores	0.72	0.19
Standard Deviation Lagged Math Scores	0.74	0.18
School-Level Averages	Mean	SD
Enrollment	834.99	324.50
ELL percent	15.04	12.10
Percent Free or Reduced Lunch	76.24	22.27
Percent Black	30.75	30.27
Percent Hispanic	36.6	26.23
Average Expenditure per Pupil	11090.66	2309.30
Age of School	14.67	3.33

[^0]: *** $p<0.001,{ }^{* *} p<0.01, * p<0.05,+p<0.1$; Standard errors in parentheses

[^1]: ${ }^{* * *} p<0.001,{ }^{* *} p<0.01,{ }^{*} p<0.05,+p<0.1$; Standard errors in parentheses

[^2]: *** $p<0.001,{ }^{* *} p<0.01,{ }^{*} p<0.05,+p<0.1$; Standard errors in parentheses

