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Abstract 
 

To make up for pandemic-related learning losses, many U.S. public school districts have 
increased enrollment in their summer school programs. We assess summer school as a strategy 
for COVID-19 learning recovery by tracking the academic progress of students who attended 
summer school in 2022 across eight districts serving 400,000 students. Based on students’ 
spring to fall progress, we find a positive impact for summer school on math test achievement 
(0.03 standard deviation, SD), but not on reading tests. These effects are predominantly driven 
by students in upper elementary grades. To put the results into perspective, if we assume that 
these districts have losses similar to those present at the end of the 2022–23 school year (i.e., 
approximately -0.2 SD), we estimate summer programming closed approximately 2% to 3% of 
the districts’ total learning losses in math, but none in reading.
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1. Introduction 

Following the pandemic, many students remain behind academically, and the pace of 

recovery is slow (Lewis & Kuhfeld, 2023). School districts have responded with a range of 

academic interventions, from extended school calendars to high-dosage tutoring (Carbonari et 

al., 2022; Diliberti & Schwartz, 2022). Although discussions about COVID-19 recovery often 

focus on the promise of high-dosage tutoring (Nickow et al., 2020), summer school has also been 

a popular recovery strategy. “Summer learning” was the most common example of academic 

recovery spending in a recent analysis of 5,000 district spending plans for the American Rescue 

Plan Elementary and Secondary School Emergency Relief (ESSER) funds (Dimarco & Jordan, 

2022b). This same analysis estimates that districts’ total ESSER spending on summer programs 

will reach $5.8 billion by September 2024 (DiMarco & Jordan, 2022a). In a national survey from 

2022, 70% of districts reported providing new or expanded summer programming because of the 

pandemic (Diliberti & Schwartz, 2022). The importance of summer learning has also been touted 

by district leaders: Alberto Carvalho, the superintendent of Los Angeles Unified School District, 

recently noted that the district’s summer programs were “critical to address learning loss, provide 

individualized instructional support and offer unparalleled acceleration options for our students” 

(Harter, 2023). 

It is no surprise that summer programming is an important part of districts’ academic 

recovery efforts. Given school vacation schedules, summers offer an opportunity to provide extra 

support for student learning: districts can leverage existing infrastructure and resources in the 

summer (i.e., school buildings, buses, teachers), and families can benefit from access to 

childcare. The voluntary nature of summer school may also sidestep some of the political 

challenges associated with extending the school year (MacGillis, 2023). Pre-pandemic research 

has shown that well-designed summer programs increase student achievement in math (Lynch et 
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al., 2023). The pre-pandemic impacts on reading achievement are more ambiguous: Kim and 

Quinn’s (2013) meta-analysis of programs using research-based reading curricula found positive 

impacts of classroom-based interventions, but Augustine and colleagues’ (2016) multisite 

randomized controlled trial (RCT) of district-led summer learning programs found improvements 

to math achievement following summer school, but no improvements to reading. Research has 

also shown that poor attendance can reduce program effectiveness (Augustine et al., 2016), and 

many summer programs with low attendance appear to have limited effects on academic success 

(Kim & Quinn, 2013; Lynch et al., 2023).  

Despite the modest positive impacts shown in research conducted before the pandemic, 

there has been little research into the effects of summer learning following the pandemic. With 

that in mind, we assess the academic progress of students who attended summer school 

following the 2021–22 school year across eight districts that collectively serve about 400,000 

students. Controlling for student characteristics and spring 2022 achievement, we find an average 

impact of summer school participation of 0.03 standard deviation (SD) in math.1 We do not find 

statistically significant impacts in reading. To put these results in context, at the end of the 2022–

23 school year, students were still -0.2 to -0.25 SD behind in math in upper elementary grades 

(Lewis & Kuhfeld, 2023). That means that if 100% of students participated in summer 

programming, it would have closed about 10% of the average learning loss associated with the 

COVID-19 pandemic in these districts. However, when we account for the fact that in this study 

just 13% of students enrolled in summer school in the average district, the summer school 

programs we studied closed only 2% to 3% of pandemic-related learning loss. In the next 

 
1 As we note in the Methods section, we attempt to minimize any selection bias in our estimates by using a 
selection-on-observables research design. Although we use causal language through the report (e.g., “impact”), we 
cannot rule out the possibility that our results are biased in an unknown direction.  
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section, we set the stage for the study by briefly summarizing pre-pandemic research on the 

design of summer programs and their estimated effects on student achievement. 

2. Background 

2.1 Summer Program Design and Effects 

Pre-pandemic evidence on the design of summer school programs primarily comes from 

formative evaluations and best-practice literature (Bell & Carrillo, 2007; Boss & Railsback, 

2002; McEachin et al., 2018; McLaughlin & Pitcock, 2009). This literature suggests summer 

programs are typically designed to be voluntary, delivered (in part or whole) by district staff at a 

subset of “hub” school sites, and include educational and enrichment activities. Programs vary 

widely, with different eligibility and invitation rules, curricula, class sizes, amounts of daily 

instructional time, and overall durations.  

Based on a multiyear study of summer school programs in seven districts, researchers 

from the RAND Corporation recommended a more consistent approach to summer school, which 

includes both high-quality planning and curricula, hiring the district’s most effective teachers, a 

mix of academic (3 to 4 hours, daily) and enrichment activities, and sufficient duration (5 days 

per week, for 5 to 6 weeks; Schwartz et al., 2018). However, implementing these 

recommendations can be challenging. Even with prior guidance on program design, several 

programs in the RAND Corporation study failed to meet the recommended criteria. 

 The broadest evidence about the efficacy of summer interventions comes from two meta-

analyses of subject-specific programs. A meta-analysis of 41 studies of school and at-home 

summer reading programs in Grades K–8 showed wide variation in effects but concluded that 

classroom-based summer reading programs improved reading test achievement for students from 
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low-income households by about 0.09 SD (Kim and Quinn, 2013).2 A more recent meta-analysis 

of 37 studies of summer math programs found similarly positive effects (+0.10 SD) on students’ 

standardized math achievement across income levels (Lynch et al., 2023).3  

Other evidence on the impact of voluntary, district-run summer programs comes from the 

RAND Corporation study noted earlier (Schwartz et al., 2018). Along with collecting 

programmatic details, the study included an RCT that examined the effects of offering two years 

of voluntary classroom-based summer programming for approximately 3,000 students across 

five districts. The results suggested the programs improved students’ math achievement after the 

first summer (+0.08 SD) but had no benefits after the second summer. The programs had no 

impact on reading achievement in either year. However, because the districts struggled to 

maintain high levels of enrollment and attendance, the study’s intent-to-treat analysis likely 

understated the benefits to students who attended the program. In particular, in the study’s first 

year, the researchers reported that 21% of students did not show up at all to the program, 29% 

had low attendance (i.e., less than 80% of the time), and only 50% had high attendance (i.e., at 

least 80% of the time). Attendance issues increased in the second year, with less than one-third 

of the original sample attending more than 80% of the program. 

In a related study (Augustine et al., 2016), researchers found summer school benefits 

were associated with students attending at least 20 days of programming. Since student 

enrollment and attendance were so important to the program’s impact, the RAND Corporation 

researchers recommended that districts invest in personalized program recruitment, set firm 

 
2 Fourteen (40%) of the studies employed a regression discontinuity design or leveraged an RCT to estimate 
program effects on reading outcomes (Kim and Quinn, 2013). 
3 Eleven (30%) of the studies employed a regression discontinuity design or leveraged an RCT to estimate program 
effects on math outcomes (Lynch, An, and Mancenido, 2023). 
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enrollment deadlines, have clear attendance policies (and offer incentives if possible), and 

establish systems for monitoring enrollment and attendance (Schwartz et al., 2018). 

2.2 Summer Programs and Academic Recovery From COVID-19  

Systematic evidence on how summer school may have changed during the pandemic—

and with what results—is scarce. As we noted earlier, survey research suggests districts 

expanded summer school in response to the pandemic, with most reporting new or increased 

programming (Diliberti & Schwartz, 2022). Other pandemic-related evidence suggests students 

may be seeing more academic recovery during the summer than during the school year (Lewis & 

Kuhfeld, 2023). In fact, during the pandemic, students appeared to suffer less from “summer 

slide” than they did prior to the pandemic (Lewis & Kuhfeld, 2022). For example, relative to 

summer 2019, summer slide in 2022 decreased on average from -0.09 SD to -0.07 SD in reading, 

and from -0.20 SD to -0.17 SD in math across Grades 3–8. In short, during the pandemic, 

districts reported expanding summer programming and students appeared to be learning more in 

the summer. But it is hard to know what to make of either improvement, given the lack of careful 

assessments of summer school as a strategy for learning recovery from COVID-19. With that in 

mind, we estimate impacts of summer learning programs on achievement with the goal of 

highlighting how these interventions fit into the broader range of strategies that schools and 

districts will need to meet this moment. More specifically, we examine how summer 

interventions have affected academic achievement in the wake of COVID-19 by using a detailed 

dataset from eight districts that includes details on program characteristics, student eligibility and 

attendance, and academic outcomes. We contextualize these findings against recent evidence on 

the learning loss related to COVID-19 that remains at the end of the 2022–23 school year. The 

following section explains our sample, data, and approach. 
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3. Method 

3.1 Data 

This report draws on data from the Road to Recovery (R2R) project, an ongoing 

partnership between researchers and 11 school districts that aims to provide districts with timely 

feedback on their academic recovery interventions. Of these districts, eight provided data to 

participate in the summer 2022 analysis, and these districts comprise the sample for this report.4 

These eight districts collectively enroll approximately 400,000 students across seven states. As 

displayed in Table 1, these districts serve higher percentages of Black and Hispanic students 

(56%) and students eligible for free- and reduced-price lunch (55%) relative to national averages 

(33 and 45%, respectively).5 

We constructed an analytic sample of students from these eight districts that met the 

following criteria: a student was expected to be entering Grade 1 through Grade 8 in fall 2022, 

was eligible for the summer program based on district-specific criteria, and had NWEA MAP 

Growth scores for both the spring 2022 and fall 2022 tests in reading or math.6 We exclude 

students who left the district between the spring test and fall test periods. Our combined district 

analytic samples include 129,721 students, with numbers ranging from 1,804 to 39,248 students 

across districts and subjects.  

 
4 These districts include Alexandria City Public Schools (Virginia), Dallas Independent School District (Texas), 
Guilford County Schools (North Carolina), Portland Public Schools (Oregon), Richardson Independent School 
District (Texas), Suffern Central School District (New York), Tulsa Public Schools (Oklahoma), and one district 
that asked to remain anonymous. For more about R2R and related research, see CALDER (n.d.).  
5 In alignment with our agreements with each of the R2R districts, we protect districts’ anonymity with respect to 
their results by masking district names and by being purposely ambiguous about the details of specific programs.  
6 An exception to this rule is one district (District 7) with optional MAP testing and very low testing rates in spring 
2022. For this district, we include spring 2022 state standardized test scores as a proxy for spring 2022 MAP scores, 
and we define our analytic sample based on the combined availability of state standardized test scores along with 
winter 2022 and fall 2022 MAP scores. Our model specification for this district includes cubic polynomials of both 
winter 2022 MAP and state standardized test scores. Less restrictive specifications that allow for missingness in 
either of these variables yield consistent results. 
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Data for this study come from three primary sources: (a) interviews about program 

characteristics with district leaders, (b) student-level eligibility and program participation data 

provided by the districts, and (c) NWEA MAP Growth assessments. We describe each of these 

sources in more detail below. For the purposes of this study, a summer learning program was 

defined as a program that the district provided for formal academic support in math and/or 

English language arts over the summer.7 

Interviews 

We collected qualitative data on the design and implementation of summer learning 

programs in fall 2022 through semistructured interviews with summer programming leaders in 

each district. In total, we conducted nine interviews. All interviews were conducted virtually, 

lasted 60 minutes, and the research team followed up via email and reviewed any documentation 

shared by program leaders to resolve any remaining questions. The questions focused on the key 

design elements of each program, including student eligibility criteria, invitation processes, 

program duration and intensity (i.e., hours per day), daily hours of instruction in each subject, 

delivery mode (e.g., virtual or in-person), and staffing. We also asked about whether tutoring 

was offered through the summer program; if yes, we asked how students were identified to 

receive the tutoring, when did the tutoring happen and for how long, and what did students who 

did not receive tutoring do during the tutoring time. Additional questions probed about the 

successes and challenges the district experienced in implementing the program as designed. 

Notes from interviews were captured in a notes template that was shared with participants during 

 
7 This definition excluded some summer programs offered by R2R districts from our analysis because they were 
focused exclusively on enrichment activities, such as art, karate, or drama. We excluded these programs from our 
analysis because the districts did not consider these programs to be academic recovery programs with the explicit 
goal of improving student achievement. 
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the interview and reviewed by participants following the interview to ensure accuracy.8 The key 

design elements of each program are summarized in Table 2.  

Student-Level Eligibility, Participation, and Dosage 

Following their program interview, each district received a student-level data request 

tailored to their district and programs. All requests included enrollment data, attendance data, 

and demographic data from the 2021–22 and 2022–23 school years. Requests also included a 

wide variety of summer-program-specific eligibility and participation student-level variables, 

such as being recommended or invited to attend summer school, multi-tiered systems of support 

in math and English language arts, previous state test scores, summer school enrollment status, 

summer school site attended, and daily program attendance.  

We counted students as attending summer school if they attended at least one day. We 

also measured the dose of the program that students received as the average number of days that 

students attended the program, among those who attended at all; we also considered the number 

of hours of math or reading instruction students received each day and the percentage of total 

program days attended.  

NWEA MAP Growth Assessments  

The achievement outcome data in this study are from the NWEA MAP Growth 

longitudinal student achievement database. School districts use MAP Growth assessments to 

monitor student achievement and growth in reading and math over the course of the school year. 

In most districts, the tests are administered three times each year: in the fall, winter, and spring.9 

Relative to state tests administered each spring, MAP Growth assessments are particularly well-

 
8 The interview notes template is available at https://caldercenter.org/sites/default/files/District-SR-template-
summer22.pdf  
9 Schools typically administer fall tests between August and November, winter tests between December and mid-
March, and spring tests between late March and June. 

https://caldercenter.org/sites/default/files/District-SR-template-summer22.pdf
https://caldercenter.org/sites/default/files/District-SR-template-summer22.pdf
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suited for the present study because they can more narrowly isolate changes in student 

achievement over the summer and between spring and fall assessments between two school 

years, rather than from spring to spring. Relative to a fixed form test, the computer-adaptive 

format of the MAP Growth assessment increases precision at the high and low ends of the 

distribution; this increased precision is particularly pertinent in the context of the pandemic, 

because many students are performing below grade level. 

We standardize NWEA MAP Growth scores by subject and grade level using the NWEA 

2020 MAP Growth norms (Thum & Kuhfeld, 2020) that are based on a nationally representative 

sample of students in the pre-pandemic school years (i.e., 2015–16, 2016–17, and 2017–18). We 

define “grade level” as students’ expected rising grade in fall 2022 based on the grade they were 

enrolled in as of spring 2022 to have a consistent measure of grade across students, regardless of 

whether or not a student repeated or skipped a grade in the following year.10 Normalizing the 

scores enables us to assess students’ academic performance relative to a pre-pandemic 

nationwide distribution of test scores.11 

The NWEA data also include student-level demographic data on race/ethnicity and 

gender. School-level demographic and enrollment data linked to the NWEA dataset are from the 

2020–21 Common Core of Data collected by the National Center for Education Statistics. 

 

 

 

 

 
10 For each district, we confirmed that atypical grade progression patterns were rare and that including or excluding 
these students in our sample did not affect our results. Of note, grade progression/retention was not contingent on 
summer school attendance for any district herein.  
11 z(Yigst) = (Yigt - Ȳgt) / SD(Ygt) 
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4. Empirical Approach 

4.1 Identification Strategy 

We use value-added models to estimate the effect of each of the eight summer programs 

on MAP Growth test scores, using the previous spring as the baseline and the subsequent fall 

score as the outcome: 

MAPmath,ijt = β0 + β1SSi + β2Otheri,math + β3Otheri,ela + τ Xi,t × Gradeit + ψ Sch_Gradeij,t-1 + 

εijt. 

In the above equation, MAPmath,ijt denotes math achievement for student i in school j in 

term t as measured by the standardized math MAP Growth score and where t is fall 2022. Our 

main treatment variable is the SSi term, a binary indicator equal to 1 if student i attended at least 

one day of summer school during summer 2022. The estimated effect of participating in the 

summer school program is therefore the estimated coefficient �̂�𝛽1. The term Otheri is an indicator 

variable equal to 1 if student i attended other academic COVID-19 recovery interventions during 

the summer, such as tutoring. Three of the eight districts provided tutoring sessions during the 

summer, mostly at summer school sites. In those districts, we considered the receipt of tutoring 

and summer school as an additional intervention, distinct from summer school alone or tutoring 

alone. The vector Xi, includes students’ prior achievement, demographics, and missing data 

indicators. Specifically, we include student i’s baseline MAP math achievement in term t – 1 as a 

cubic polynomial, where t – 1 is spring 2022. We additionally include prior MAP math test 

scores from winter 2022 and fall 2021 as well as spring 2022 MAP reading test scores. We 

interact all MAP scores with a categorical variable (i.e., MAP_missflag) flagging possible 

combinations of missingness within each subject.12 Whenever appropriate and available, we also 

 
12 This is commonly referred to as the missingness-indicator method. For a recent theoretical support of this method, 
see Zhao and Ding (2023). 
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included any prior tests, such as state standardized tests, which were used to identify students to 

be prioritized for summer programs. We also include in pretreatment student covariates in Xi,t-1 

that includes, when available, a student’s race/ethnicity, gender, Individualized Education 

Program status, English language learner status, 504 plan status, and economic disadvantage 

status as of term t – 1. Finally, we include indicators for the calendar weeks during which student 

i took each math MAP Growth test in terms t and t – 1, respectively. The entire vector is 

interacted by grade level to account for across-grade differences in the relationship of covariates, 

treatment, and the outcome. Sch_Gradeij,t-1 represents school-by-grade fixed effects, based on the 

school and grade of student i in spring 2022. εijt denotes idiosyncratic error. We estimate a linear 

model and cluster the standard error at the school-by-grade level (Abadie et al., 2022). When 

reading achievement is the outcome, we reverse the reading and math subscripts in equation (1). 

Our primary focus is β1, the coefficient on the summer school treatment. In order for β1 to 

identify a causal relationship, we must assume that students in the treatment group (enrolled in 

summer school) are randomly assigned conditional on the other covariates in the model. Our 

selection-on-observables research design will not identify the causal effect of summer school if 

students were selected into summer school for reasons not observed in our data (e.g., motivation, 

family resources) and correlated with subsequent achievement. But it is not possible to a priori 

sign the direction of any bias. For example, it is possible that students who attended summer 

school regularly had higher motivation or family resources (e.g., an adult available to get them to 

school) compared to students who did not attend regularly or at all, positively biasing treatment 

effects. On the other hand, families may have opted out of summer school if they needed longer 

childcare throughout the day or signed their students up for programs that not only were longer 

but also had an educational benefit, negatively biasing the estimates. That said, there are two 
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reasons to believe the results capture the true effect of summer school. First, researchers have 

used value-added approaches in program evaluation to isolate the causal effect of teachers and 

schools (Abdulkadiroglu et al., 2011; Bacher-Hicks et al., 2019; Chetty et al., 2014; Deming, 

2014). Second, as we describe below, given the length of the summer school programs in our 

study, the positive effects in math we observe are not far off from what would have been 

expected based on pre-pandemic experimental estimates of the impact of summer school 

attendance. 

We adapt the above general specification based on each district’s available data and 

summer school program design. For districts that used data and/or created decision rules that 

combined multiple data sources to target or prioritize students for participation (e.g., scores 

below a certain threshold on MAP assessments, state tests, and/or other academic assessments), 

we control for a binary measure of prioritization in addition to any other indicators or test scores 

(in cubic form) related to prioritization. As with the MAP scores described above, we impute 

missing values of these additional achievement measures and interact them with imputation flags 

and expected rising grade level. 

In addition to estimating the effect of summer school participation, we estimate the effect 

of an hour of math (or reading) instruction during summer school on fall 2022 MAP scores. For 

these specifications, we substitute binary measures of participation in summer school and/or 

other academic COVID-19 recovery interventions taking place during the summer with 

continuous measures of the number of hours of instruction received in these programs. In most 

cases, these measures are based on daily attendance data received from the district and 

information from district interviews on the intended hours of subject-level instruction per day.  
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Last, we synthesize our estimates of summer program effects from the eight districts by 

conducting a meta-analysis. For each subject, we estimate meta-analytic estimates with a random 

effect model with restricted maximum likelihood (REML) estimation (DerSimonian & Laird 

1986; Hedges, 1983; Raudenbush, 2009). 

4.2 Contextualizing Our Estimates  

We use the estimated effects from the pre-pandemic summer school impacts literature to 

help contextualize our findings. Specifically, we compare our estimates to those we would 

expect to see, given the observed dosage (in days) of summer school and benchmark effect sizes 

found in the existing literature on the academic impacts of summer school. For math, we use 

meta-analysis estimate of 0.101 SD (see Lynch et al., 2023), based on summer programs 

averaging 5.2 weeks (i.e., 26 days) in length, with an average of 2.1 hours of math instruction. 

For reading, we use a meta-analysis estimate of 0.09 SD for classroom-based summer 

interventions (see Kim & Quinn, 2013), and we assume that the program length and daily dosage 

of reading instruction were similar to those of the math benchmark estimate. Assuming a linear 

relationship between the amount of time spent in instruction during summer school and the total 

average effect of the program, we back out an hourly expected effect of summer school 

instruction (e.g., 0.101 SD/(26*2.1) SD in math), which we then multiply by the average dosage 

of instruction received in each subject to arrive at the “expected effect” of summer school 

participation in each district. 

We similarly calculate an “expected effect” for interventions that combined summer 

learning programs with tutoring. For these cases, which occur in three of our districts, we also 

use findings from a meta-analysis of studies on high-quality, high-dosage tutoring programs 

(Nickow et al., 2020) that estimate gains of 0.38 SD (0.35 SD) in math (reading) achievement 
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assuming three tutoring sessions per week. Over a 36-week school year, that equals 108 hours of 

tutoring. To arrive at the total expected effect for this combined intervention, we add the 

expected effect from the average dosage of summer school instruction with the expected effect 

from the average dosage of additional tutoring instruction. 

5. Results 

5.1 Participation and Dosage 

The percentage of students who attended at least one day of summer programming for 

each of the eight R2R districts in the sample is seen in Table 3, Column 4.13 In the districts 

where we could observe attendance (and not simply summer school sign-ups), the participation 

rates varied substantially across the districts, ranging from 4.8% to 22.6%. The one exception 

was District 3, in which 46.2% of students enrolled but an unknown percentage of students 

attended. The average participation rate across the seven districts is approximately 13.1%, 

similar to the proportion of households with children under age 18 that reported children’s 

attendance in summer learning programs in summer 2022 (approximately 10%) in the nationally 

representative 2022 Household Pulse Survey data.14 Across the R2R districts, average 

participation rates were higher among students whose schools were host (“hub”) sites for the 

summer program (17.3%) relative to students whose schools were not summer sites (11.9%).  

Most districts targeted recruitment for their summer programs toward students they 

considered to be most in need of additional support, but also allowed (and often encouraged) 

 
13 It is important to note that students in some grade levels were omitted from the analytic sample due to sparse 
MAP score availability (which varied by district), even though they were offered summer programming. If we 
include these grades, participation rates in some districts were slightly higher than described in this study. For 
example, while the participation rate for District 8 was 4.8% for rising students in Grade 6 to Grade 8, the rate 
across all rising students in first through ninth grade (as the program was designed), the participation rate was 
slightly higher.  
14 We use data from the Week 49 Household Pulse Survey Public Use File release 
(https://www.census.gov/programs-surveys/household-pulse-survey/datasets.html) and limit the sample to 
respondents with children under age 18 enrolled in public schools. 

https://www.census.gov/programs-surveys/household-pulse-survey/datasets.html
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nontargeted students to attend if they wanted. More specifically, six of the eight R2R districts 

(Districts 2, 3, 4, 6, 7, and 8) targeted recruitment efforts for their summer programs at subsets of 

struggling students using criteria that ranged from failing to meet threshold scores on state 

standardized tests to the discretion of classroom teachers. The resulting groups of prioritized 

students comprised 28% to 55% of the districts’ populations, and participation rates were higher 

among these students than nontargeted students across districts that used targeting (see Appendix 

Table A1). In District 7, all the students who participated were students who were prioritized for 

enrollment. The higher proportions of students attending summer programs in districts with 

targeted recruitment aligns with additional evidence in Appendix Table A1 that targeted students 

who participated in summer programs at these districts tended to score substantially lower on the 

MAP Growth tests, by about 17 Rasch UnIT (RIT) points in math and 11 RIT points in reading, 

prior to the summer. Participation rates in these districts were also higher for students in 

disadvantaged subgroups, including students receiving special education services, students who 

are English language learners, students who are economically disadvantaged, and students who 

are Black or Hispanic. At the two districts (Districts 1 and 5) that did not use targeting and 

encouraged all students to attend, participation rates varied less by spring MAP scores 

(participants scored 3 RIT points lower in math and 5 RIT points lower in reading) and across 

student subgroups. (See Appendix Table A1 for a breakdown of participation rates by 

subgroups.) 

Notably, District 1 had the highest rate of participation within our sample. A distinct 

design feature that likely drove this participation rate was District 1’s extended summer program 

hours (see Table 2), which operated from 8 a.m. to 5:30 p.m. for elementary school grades and 

from 9 a.m. to 4 p.m. for secondary school grades, thus providing child care for working parents. 
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Moreover, the district leaders expressed that framing their summer programs as “summer 

camp”—an exciting learning and enrichment program during the summer—rather than as 

“summer school”—may have helped recruited students to opt into the program. 

As we show in Table 2, the intensity of summer programs varied across districts: summer 

programs offered between 15 and 20 days of programming, with anywhere between 45 minutes 

and 2 hours of daily academic instructional time per subject (i.e., math and reading). Six districts 

convened four days per week, and the other two districts offered five days per week of 

programming. Total hours of academic instruction ranged from 23 to 67 hours across programs. 

Overall, these planned dosages are notably smaller than the recommended minimum of 75 hours 

of academic instruction per program (see Schwartz et al., 2018), and are smaller than those of 

summer programs evaluated in the previously mentioned studies and that have been evaluated 

and documented in the literature. For instance, five district-led summer programs evaluated by 

the National Summer Learning Project (Augustine et al., 2016; McCombs et al., 2014) offered 

between 23 and 29 days of instruction. Similarly, the average length of summer programs 

reviewed by Lynch and colleagues (2023) was approximately 5.2 weeks (26 days, assuming five 

days per week of programming).  

Of note, three districts (Districts 2, 4, and 6) offered tutoring to a subset of students 

during their summer programs. District 6 designed their program with the goal of delivering two 

to three 30-minute tutoring sessions per week during the time that students would otherwise be 

participating in enrichment activities, effectively providing three to seven supplemental hours of 

instructional time beyond what was provided through the standard program. However, students 

in Districts 2 and 4 were generally pulled out of their academic summer program classes to 
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receive tutoring, such that the tutoring hours effectively substituted for other academic time and 

did not increase the overall dosage of instruction students received through the program.  

Attendance plays a key role in the ability for summer programming to affect student outcomes, 

and we see evidence of significant heterogeneity across districts in student participation rates. 

Table 3 (Column % Total Days Attended) shows that the proportion of days attended relative to 

the number of intended days varied from 58% to 80%, with the average of 68.5%. Across the 

districts, this translates to students attending between 9.9 and 13.6 days of summer school, and—

accounting for attendance rates—receiving 60 to 120 minutes per day of instruction per subject 

and approximately 14 to 27 total hours of summer instructional time per subject.15 

 5.2 Impact Estimates 

Academic effects of summer school 

 Figures 1 and 2 show the estimated effects of attending at least one day of summer school 

on fall MAP Growth 2022 math and reading scores, respectively, across all the grade levels 

examined, as well as the expected effect based on the average dosage received in each district. 

We focus on the effect of attending at least one day of summer school because it is difficult to 

account for selection biases that lead to differential uptake of treatment in observational data. At 

the top of both figures, the “overall” estimate reflects results from a cross-district meta-analysis 

using a restricted maximum likelihood (REML) model. While the analytic samples and model 

specifications vary somewhat across districts because of summer program design and data 

availability, data limitations in two districts are worth noting. In District 3, we have data only on 

whether a student was enrolled in the summer program, not whether they attended, and as such 

 
15 Proportion of scheduled days students attended in District 4 was low at 58%. The summer program was separated 
into two blocks, with a one-week break in-between, which likely affected the number of days students attended.  
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the point estimate shown is of the estimated treatment effect of simply being enrolled.16 In 

District 8, representative MAP Growth scores are available only in middle school grades, 

limiting our analysis to these grades despite that elementary students participated in the summer 

program as well. Given these distinctions, we also show an overall estimated effect that excludes 

Districts 3 and 8. 

While the estimates across districts vary, outside of Districts 7 and 8, all are positive for 

math test scores and quite close to the aggregated (across districts) point estimates of roughly 

0.03. This aggregated figure (0.032 when Districts 3 and 8 are excluded) is also nearly equivalent 

to the expected effect from research (0.036 SD).17  

Figure 3, which shows the estimated effect of each hour of summer school instruction in 

math, offers similarly positive results. The overall estimate excluding Districts 3 and 8 is 0.0018 

SD, equivalent to the expected hourly effect (0.0018 SD). Five of the eight districts (1, 2, 4, 5, 

and 6) have statistically significant positive hourly effects, ranging from 0.0014 SD to 0.0040 

SD.  

Our findings are less promising when it comes to effects on reading scores. As shown in 

Figure 2, the effect of attending at least one day of summer school was positive and statistically 

significant only in District 6, where the estimated effect (0.029 SD) was roughly equivalent to 

the expected effect. In the remaining districts, the estimated effects are statistically 

indistinguishable from zero. Similarly, estimates of hourly effects of summer school on reading, 

shown in Figure 4, are statistically indistinguishable from zero in all districts except for District 6 

 
16 District 3’s estimate would therefore be negatively biased if interpreted as the impact of attending at least one day 
of summer school.  
17 Four of the eight districts (1, 2, 4, and 6) had statistically significant estimated effects, all of which were close to 
or exceeded the expected effect from research. Two other districts (3 and 5) had positive though not statistically 
significant estimates, though sample sizes in those districts were also notably small. 
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(0.0013 SD, where the estimate was indistinguishable from the expected hourly effect of 0.0017 

SD). While overall these results are smaller in magnitude than what we would expect,18 they are 

consistent with the findings from a multisite RCT of district-led summer learning programs 

conducted by RAND Corporation (Augustine et al., 2016), which found improvements to math 

achievement following summer school but not to reading. 

Subgroup analyses 

In addition to estimating the effects of summer programming across all grade levels 

included in our analysis, we examine effects by elementary and middle school grade ranges. The 

results of these grade range analyses are shown in Tables 4 and 5 for math and reading, 

respectively. When broken out by grade range, we find that younger students—those rising in 

Grade 5 and below—drive the positive gains in math. In nearly every district, the magnitude of 

the estimated effect is considerably greater among elementary grades than middle school grades, 

with the exception of District 5, where the estimated effects are equivalent. By and large, the 

program length and attendance rates among participants were similar across grade ranges within 

each district, suggesting that the differential effectiveness was not a result of different amounts 

of dosage.  

We also estimated the effects of summer school by different student subgroups, including 

by race and ethnicity, free-or-reduced-price lunch status, special education status, English learner 

status, prior performance levels, and by eligibility for targeting for enrollment in summer school 

(See Appendix Tables A2-A8).19 Across all districts, we found little evidence for heterogeneity 

of impact across these subgroups, though, in many cases, small sample sizes limited our ability 

 
18 Based on Kim and Quinn (2013), whose meta-analysis focused on programs using research-based reading 
curriculums). 
19 We do not present results by subgroup for District 5 due to sample size. 
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to detect differences across groups. In District 6, one of our larger districts, we detected strong 

positive gains in math overall, and we found significant positive gains particularly among Black 

students, who comprised approximately 53% of summer school participants, relative to 41% of 

the overall student population. 

Academic effects of summer school with tutoring 

Figure 5 shows the estimated effects in math and reading of attending any amount of 

summer school that replaced or supplemented classroom instruction with tutoring. Our estimated 

impacts of these programs are similar to our estimated impacts for receiving the standard 

summer learning program in each of the three districts that offered summer school with tutoring. 

Among these districts, only Districts 2 and 4 (where tutoring time typically replaced classroom 

instruction) have positive and statistically significant effects of the combined program on math 

(0.038 SD [District 2] and 0.047 SD [District 4]), though the (nonsignificant) point estimate for 

District 6 (where tutoring time supplemented classroom instruction) is of similar magnitude 

(0.044 SD). It is worth noting that fewer students participated in combined summer school with 

tutoring than in summer school alone. The total number of students taking part in this 

intervention for math was 2,477 in District 2; 826 in District 4; and 790 in District 6 (in reading, 

1,686, 1,096, and 425, respectively).20 Our statistical power for this analysis was therefore 

limited, particularly in District 6, where only 2.4% of the student population in the relevant grade 

levels participated, suggesting that the nonsignificance of its estimated effect is likely driven in 

part by sample size. In reading, on the other hand, none of the estimated effects are statistically 

distinguishable from zero, and the magnitudes are considerably smaller (or negative) relative to 

 
20 These participant numbers are among students in the analytical sample of each district, meaning that they are in 
the relevant grade levels and that they have valid spring and fall 2022 MAP scores.  
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math. The effect of the standard summer learning program is statistically equivalent to summer 

school with the addition of tutoring. 

6. Discussion and Conclusions 

Across the eight districts in the study, we found that the structure (e.g., size relative to 

district enrollment, number of days, hours per day) of summer programs and take-up rates varied 

substantially. Students who attended summer programs tended to make small but significant 

improvements in math achievement, but no significant gains on reading tests relative to similar 

peers who did not attend. Our results are important not only for adding additional evidence to the 

use of summer programs to improve student learning but also whether these programs can make 

noticeable headway into the learning losses caused by the COVID-19 pandemic.  

We add to the existing evidence on summer learning programs impacts on reading and 

math achievement. For reading, we estimate null effects of attending a program in all but one 

district and can rule out even small positive effects of at least 0.03 SD for most programs. The 

general lack of effects on reading aligns with the null reading effects estimated in the RCT study 

by Schwartz et al. (2018). The results are disappointing when compared to the average reading 

achievement effects of classroom-based summer reading interventions estimated in the meta-

analysis of Kim and Quinn (2013). We speculate that one reason it may be more difficult to 

achieve reading gains than math gains for summer school participants relative to nonparticipants 

is because nonparticipants may also practice reading over the summer but may be less likely to 

practice math. This explanation would align with evidence that shows larger effects of school 

inputs on math achievement than reading (e.g., Burgess et al., 2023; Riehl & Welch, 2022). To 

inform the interpretation of the impact of summer programs on reading achievement, future 

research should examine the summer experiences of students who were eligible or invited to 

attend but did not participate. 
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Our analysis of math gains, by contrast, found participants’ spring to fall test score gains 

per hour of academic programming were positive and remarkably similar across districts. They 

were also similar to what would be expected based on the pre-pandemic literature at six of the 

eight R2R districts (Lynch et al., 2023); perhaps surprisingly, the estimated math gains were 

prevalent even in districts that served larger proportions of their students, up to 23% of their 

students in rising Grade 3 to Grade 8. These broad-based findings suggest that adding additional 

days of programming (with the same or more instructional time) could yield additional math 

gains for students. The consistency in math gains across different student subgroups indicates 

that, when summer program enrollment is limited, increasing the targeted recruitment and 

attendance of struggling students may be an effective strategy for boosting achievement among 

students with the greatest academic needs. Indeed, we find that low-performing and 

disadvantaged students comprised higher proportions of summer programs that targeted 

struggling students than programs that encouraged all students to participate. That said, districts 

that targeted recruitment still were far from reaching all of the prioritized students: on average, 

only 25% of targeted students participated. As the American Rescue Plan Elementary and 

Secondary School Emergency Relief funding lapses and districts’ resources for summer 

programming likely decline, districts should consider replacing open enrollment policies with 

more targeted efforts at recruiting lower achieving students. Assigning schools that serve higher 

proportions of these students to be hub sites for the summer could be one such effective strategy, 

as participation rates were consistently higher among students whose school sites hosted summer 

programming than those whose did not. 

To put our overall findings in context, we consider the magnitude of the summer school 

math gains (but not reading because we did not find significant effects) against the scale of the 
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learning loss related to COVID-19. On the National Assessment of Educational Progress, student 

achievement declined from 2019 to 2022 by 0.16 SD and 0.20 SD in Grades 4 and 8 math, 

respectively, with greater declines in high-poverty districts; districts with high percentages of 

students who are Black, Hispanic, and Native American; and districts that spent more time in 

remote or hybrid instruction during the 2020–21 school year (Fahle et al., 2023). More recent 

evidence—based on MAP assessments indicates recovery during both the 2021–22 and 2022–23 

school years—was minimal, with students in Grades 3–8 still lagging their pre-pandemic peers 

by 0.16 SD to 0.27 SD, respectively by year, only slightly improved (and worse in two grades) 

from 0.22 SD to 0.26 SD losses, respectively by year, estimated from fall 2021 (Goldhaber, 

Kane, McEachin, & Morton, 2022; Goldhaber, Kane, McEachin, Morton, Patterson, et al., 2022; 

Lewis & Kuhfeld, 2023). Consistent with our findings that summer programs were associated 

with math gains, the national research shows summer slide in math during 2022 was smaller than 

typical, accounting for much of the limited academic recovery seen from fall 2021 to fall 2022 

(Lewis & Kufeld, 2022; Quinn & Polikoff, 2017). 

But, a simple back-of-the-envelope calculation suggests that the summer interventions we 

investigated resulted in very small math gains relative to the scale of districts’ remaining 

academic recovery in math. Specifically, multiplying the weighted average effect of summer 

programs on student achievement, 0.03 SD, by the average share of students attending them, 

about 13%, yields an impact of 0.0039 SD on district-level achievement. This is roughly 2% to 

3% of the overall magnitude of pandemic-related learning loss in math. Even if districts facing 

COVID-19–related learning losses of 0.2 SD to 0.3 SD delivered best-case scenarios in summer 

school programs (i.e., longer than five weeks, with more than two hours of daily math 

instruction; or metrics that boost math gains by 0.10 SD), they would need to send every student 
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to summer school for two to three years in a row to get back to pre-pandemic math test levels 

(Lynch et al., 2023). The limited participation in and duration of the summer learning programs 

documented herein suggests that summer school, especially if expanded, can be a valuable part 

of a district’s academic recovery strategy for math, but it must be only one of many other 

repeated interventions and supports if we are to make substantial progress toward recovery for all 

students. 

Although the math gains show summer programming can be an effective district-led 

strategy for boosting math achievement, one or more years of programming at this scale will not 

be near enough for most districts to reach academic recovery from COVID-19. Alarmingly, most 

parents and families are unaware of how far their children have fallen behind and report they are 

not concerned about learning loss (Polikoff & Houston, 2022). Providing parents with accurate 

and accessible information about their students’ academic progress needs to be a top priority for 

school districts and states. In the meantime, school districts and states need to continue to drive 

the expansion of interventions that supplement instructional time, including summer school but 

also high-dosage tutoring, double-dose math courses, extended school days or years, and 

evidence-based retention programs. As ESSER winds down and efforts to expand learning time 

meet resistance, district recovery efforts will also need ongoing resources and political cover. 

Our findings here and elsewhere (Carbonari et al., 2022) underscore the need, up and down the 

system, for a continued commitment to delivering recovery interventions at the scale and 

intensity needed to address the pandemic’s academic impact. Failing to do so will have dire 

consequences for many students and society. 
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Figures and Tables 

Figure 1. Summer Programs: Effect of Treatment on Math Outcomes 

Notes: 
1. Expected effect from research is based on a 0.101 SD increase in math achievement over 26 days of summer school with 2 hours of academic 
instruction per day.  
2. N indicates the number of students in the analysis. W indicates the weight given to the analysis. 
3. Overall estimates are constructed using a random effects model with a REML estimation. SE indicates the standard error which comes from 
each estimate’s weighted errors, while Tau indicates the error arising from inter-estimate heterogeneity. 
4. For District 3, we estimated the effects of signing up for the summer program. The listed dosages are the maximum number of days and hours 
students could attend. 
5. For District 8, the analysis sample only consisted of middle school grades with low participation rates, which tended to have lower effects 
overall. See Grades 6-8 subgroup estimates. 
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Figure 2. Summer Programs: Effect of Treatment on Reading Outcomes 

 
Notes: 
1. Expected effect from research is based on a 0.09 SD increase in reading achievement over 26 days of summer school with 2 hours of academic 
instruction per day.  
2. N indicates the number of students in the analysis. W indicates the weight given to the analysis. 
3. Overall estimates are constructed using a random effects model with a REML estimation. SE indicates the standard error which comes from 
each estimate’s weighted errors, while Tau indicates the error arising from inter-estimate heterogeneity. 
4. For District 3, we estimated the effects of signing up for the summer program. The listed dosages are the maximum number of days and hours 
students could attend. 
5. For District 8, the analysis sample only consisted of middle school grades with low participation rates, which tended to have lower effects 
overall. See Grades 6-8 subgroup estimates. 
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Figure 3. Summer Programs: Hourly Effect of Treatment on Math Outcomes

 
Notes:  
1. Expected effect from research is based on a 0.101 SD increase in math achievement over 26 days of summer school with 2 hours of academic 
instruction per day.  
2. N indicates the number of students in the analysis. W indicates the weight given to the analysis. 
3. Overall estimates are constructed using a random effects model with a REML estimation. SE indicates the standard error which comes from 
each estimate’s weighted errors, while Tau indicates the error arising from inter-estimate heterogeneity. 
4. For District 3, we estimated the effects of signing up for the summer program. The listed dosages are the maximum number of days and hours 
students could attend. 
5. For District 8, the analysis sample only consisted of middle school grades with low participation rates, which tended to have lower effects 
overall. See Grades 6-8 subgroup estimates. 
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Figure 4. Summer Programs: Hourly Effect of Treatment on Reading Outcomes 

 
Notes: 
1. Expected effect from research is based on a 0.09 SD increase in reading achievement over 26 days of summer school with 2 hours of academic 
instruction per day.  
2. N indicates the number of students in the analysis. W indicates the weight given to the analysis. 
3. Overall estimates are constructed using a random effects model with a REML estimation. SE indicates the standard error which comes from 
each estimate’s weighted errors, while Tau indicates the error arising from inter-estimate heterogeneity. 
4. For District 3, we estimated the effects of signing up for the summer program. The listed dosages are the maximum number of days and hours 
students could attend. 
5. For District 8, the analysis sample only consisted of middle school grades with low participation rates, which tended to have lower effects 
overall. See Grades 6-8 subgroup estimates.  
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Figure 5. Effects of Summer Programs and Tutoring 

Notes: 
1. For math, expected effect is based on a 0.101 SD increase in math achievement over 26 days of summer school with 2 hours of academic 
instruction per day. For reading, expected effect is based on a 0.09 SD increase in reading achievement over 26 days of summer school with 2 
hours of academic instruction per day. 
2. N indicates the number of students in the analysis. W indicates the weight given to the analysis. 
3. Overall estimates are constructed using a random effects model with a restricted maximum likelihood (REML) estimation. SE indicates the 

standard error that comes from each estimate’s weighted errors, while Tau indicates the error arising from inter-estimate heterogeneity.    
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Table 1. Sample Demographics 
 R2R districts U.S. public schools 
Average district enrollment 50084 2674 
Average school enrollment 678 497 
FRPL eligible (%) 55.2% 45.4% 
Race (%)   
  Asian 4.7% 2.9% 
  Hispanic 32.3% 20.1% 
  Black 23.2% 12.7% 
  White 33.5% 59.4% 
School locale (%) 
  City 88.47% 18.5% 
  Suburb 29.26% 22.7% 
  Town 0% 14.2% 
  Rural 8.59% 42.1% 
Note. FRPL = free-or-reduced-priced lunch. Data are from the Common Core of 
Data collected by the National Center for Education Statistics during the 2020–
21 school year. 
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Table 2. Designs of Summer Programs 

 
Note. Data are based on interview notes with school district leaders conducted between fall 2022 and early spring 2023.  
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Table 3. Summer Programs: Participation and Dosage 

District Sample Rising 
Grade Level 

Sample 
Size 

% Treated Intended Program 
Length (in Days) 

# of Days 
Attended 
(Average) 

% Total 
Days 

Attended3 

Total Hours of Instruction 
per Student 

Overall Hub 
Sites2 Not Hub Math Reading 

District 1 G3-8 11,841 22.6% 28.1% 20.3% 19 12.5 65.7% 18.7 18.7 

District 2 G3-8 39,248 15.0% 19.8% 11.3% 15 10.8 72.1% 16.2 16.2 

District 3 G3-8 5,924 46.2%1 NA4 NA4 15 NA NA NA NA 

District 4 G3-8 14,689 15.1% 17.7% 14.6% 20 11.6 58.0% 23.2 23.2 

District 5 G1-8  1,804 13.6% 17.4% 14.8% 15 9.9 66.1% 14.9 14.9 

District 6 
G1-8 (math) 

33,504 12.1% 13.4% 10.5% 12-18 10.9 65.2% 20.2 21.0 
G4-8 (reading) 

District 7 G4-8 13,341 8.4% 18.8% 7.0% 20 14.5 72.5% 14.5 14.5 

District 8 G6-8 9,370 4.8% 5.9% 4.5% 17 13.6 80.0% 27.2 27.2 

 
 
Notes: 
1. For District 3, “% Treated" is based on the % of students who signed up for summer school, which included students who never showed up. The estimate 
includes an upward bias. 
2. “% Treated (Hub Sites)” shows the participation rate among students who were enrolled at a school that served as a summer school site.  
3. “% Total Days Attended” is based on students who attended any summer school and given by dividing intended program length (in days) by the average 
number of days attended. 
4. Hub site information was not available for District 3. 
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Table 4. Effects of Attending Summer Programs on Fall MAP Test, Math 

 
Notes: *p < 0.05, **p < 0.01. 
1. “Overall” refers to the meta-analytic estimates of the eight coefficients. The second overall estimate excludes Districts 3 and District 8. 
2. For District 3, we estimated the effects of signing up for the summer program. The listed dosages are the maximum number of days and hours 
students could attend. 
3. Spring 2022 MAP testing was limited in District 7 and therefore we used non-missing Winter 2022 MAP and state standardized test to define 
the sample. 
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Table 5. Effects of Attending Summer Programs on Fall MAP Test, Reading 

 
Notes: *p < 0.05, **p < 0.01. 
1. “Overall” refers to the meta-analytic estimates of the eight coefficients. The second overall estimate excludes Districts 3 and District 8. 
2. For District 3, we estimated the effects of signing up for the summer program. The listed dosages are the maximum number of days and hours 
students could attend. 
3. In District 6, rising grades 1-3 are excluded from the sample because of low reading testing rates in those grades. 
4. Spring 2022 MAP testing was limited in District 7 and therefore we used non-missing Winter 2022 MAP and state standardized test to define 
the sample. 
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Table 6. Effects of Summer Programs and Tutoring on Fall MAP Test, Math 

 
Notes: *p < 0.05; **p < 0.01. 
1. SE is standard error. 

 

Table 7. Effects of Summer Programs and Tutoring on Fall MAP Test, Reading 

 
Notes: *p < 0.05, **p < 0.01. 
1. SE is standard error. 
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Table 8. Effects of Summer Programs on Fall MAP Test by Grade Bands, Math 

 
Notes: *p < 0.05; **p < 0.01. 
1. SE is standard error. 
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Table 9. Effects of Summer Programs on Fall MAP Test by Grade Bands, Reading 

 
Notes: *p < 0.05; **p < 0.01. 
1. SE is standard error.
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Appendix  

Appendix Table A1. Sample Characteristics by Treatment Status 
 District 1 District 2 District 35 District 4 District 5 District 6 District 7 District 8 

 Treated 
Not 

Treated Treated 
Not 

Treated Treated 
Not 

Treated Treated 
Not 

Treated Treated 
Not 

Treated Treated 
Not 

Treated Treated 
Not 

Treated Treated 
Not 

Treated 

Special education1 16.0% 14.0% 25.9% 16.9% 16.1% 8.2% 39.7% 28.1% 19.2% 17.9% 22.2% 10.3% 35.9% 18.0% 50.9% 14.1% 
English language 
learner 34.0% 36.2% 57.4% 52.6% 61.0% 21.7% 45.7% 29.2% 20.4% 11.4% 24.1% 12.2% 20.4% 11.9% 26.6% 9.8% 

FRPL2 72.3% 77.2% 94.4% 87.0% NA NA 73.9% 52.1% 42.9% 34.3% NA NA NA NA NA NA 

Male 48.7% 51.3% 50.3% 50.4% 52.8% 51.4% 51.9% 51.3% 53.5% 47.7% 52.9% 50.7% 53.0% 50.9% 57.8% 49.4% 

Race:                 

     Black 24.2% 20.3% 18.5% 14.5% 25.7% 24.6% 29.0% 18.6% 13.5% 10.1% 52.6% 39.9% 19.7% 6.0% 67.4% 27.8% 

     Hispanic 37.0% 41.2% 78.0% 75.1% 52.5% 26.1% 46.4% 35.4% 0.4% 0.2% 23.8% 17.9% 29.1% 15.0% 25.9% 11.7% 

     Asian 1.7% 1.8% 0.7% 1.0% 7.6% 6.8% 8.6% 6.6% 13.1% 8.0% 5.0% 7.5% 4.5% 5.9% 0.0% 1.8% 

     Other 15.9% 16.3% 2.1% 3.3% 1.4% 3.8% 2.1% 3.4% 32.2% 22.8% 5.4% 5.6% 15.8% 13.0% 1.3% 3.8% 

     White 21.2% 20.4% 2.1% 7.7% 12.9% 38.7% 13.9% 36.0% 40.8% 58.8% 13.2% 29.2% 30.9% 60.2% 5.4% 54.9% 

Priority for summer3 NA NA 72.9% 29.6% 64.9% 3.1% 51.5% 24.1% NA NA 92.2% 50.1% 100.0% 34.8% NA NA 

Spring 2022 MAP RIT score4                
     Math 187.6 191.8 192.9 203.9 184.8 207.9 193.6 207.3 198.09 206.43 177.33 197.52 194.3 215.7 197.0 226.6 
     Reading 191.5 195.2 199.5 208.7 188.6 209.0 199.9 213.1 191.47 200.77 179.5 200.13 191.3 213.5 196.3 224.2 

Fall 2022 MAP RIT score                
     Math 187.9 192.3 193.0 203.1 188.0 210.8 195.2 208.1 196.34 204.82 181.71 200.18 190.4 212.4 190.4 218.3 
     Reading 191.1 194.6 199.4 207.5 191.4 210.3 197.8 209.8 191.42 200.6 189.15 207.4 195.1 216.2 190.1 217.7 
                 

N 2,671 9,170 5,881 33,367 2,734 3,190 2,222 12,467 245 1,559 4,037 29,467 1,162 12,587 448 8,926 
Notes: 
1. “Special Education” includes 504 Plan students. 
2. FRPL refers to free-or-reduced-priced lunch. Student-level FRPL status data was not available (NA) in District 3, 6, 7, and 8.  
3. “Priority for summer” refers to students who were prioritized to receive summer programming based on criteria that varied by district. District 1: no priority students. District 2: students who scored 
below grade-by-subject threshold on state tests. District 3: students identified as priority based on district’s own prioritization matrix. District 4: students who scored below grade-by-subject threshold on 
state tests. District 5: no priority students. District 6: low-scoring students. District 7: low-performing and historically underserved students. District 8: students identified as academically behind. For 
District 8, we do not report the statistics since the criteria for priority were based on teacher discretion. 
4. RIT is Rasch UnIT. For District 7, scores are from winter 2022 rather than spring 2022 due to limited availability of spring tests in the district. 
5. For District 3, the definition of “Treated” is signing up for the summer program, not attending it. 
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Appendix Table A2. District 1: Subgroup Analysis Results 

 
Notes: *p<0.05, **p<0.01 
Only impact estimates for subgroups with N>1,000 and the number of treated observations >100 are reported. 
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Appendix Table A3. District 2: Subgroup Analysis Results 

 
Notes: *p<0.05, **p<0.01 
Only impact estimates for subgroups with N>1,000 and the number of treated observations >100 are reported. 
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Appendix Table A4. District 3: Subgroup Analysis Results 

 
Notes: *p<0.05, **p<0.01 
1. Only impact estimates for subgroups with N>1,000 and the number of treated observations >100 are reported. 
2. For District 3, we estimated the effects of signing up for summer program. The listed dosages are the maximum number of days and hours 
students could attend. 
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Appendix Table A5. District 4: Subgroup Analysis Results 

 
Notes: *p<0.05, **p<0.01 
Only impact estimates for subgroups with N>1,000 and the number of treated observations >100 are reported. 
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Appendix Table A6. District 6: Subgroup Analysis Results 

 
Notes: *p<0.05, **p<0.01 
Only impact estimates for subgroups with N>1,000 and the number of treated observations >100 are reported. 
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Appendix Table A7. District 7: Subgroup Analysis Results 

 
Notes: *p<0.05, **p<0.01 
1. Only impact estimates for subgroups with N>1,000 and the number of treated observations >100 are reported. 
2. District 7 did not have available data on FRPL status. 
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Appendix Table A8. District 8: Subgroup Analysis Results 

 
Notes: *p<0.05, **p<0.01 
Only impact estimates for subgroups with N>1,000 and the number of treated observations >100 are reported. 
Figure 1. Summer Programs: Effect of Treatment on Math Outcomes 


	Cover & Title pages.pdf
	WP Cover 1.19.23
	CALDER WP 278-0123.pdf

	WP 291-0823
	Contents
	Acknowledgments
	Abstract
	1. Introduction
	2. Background
	3. Method
	4. Empirical Approach
	5. Results
	6. Discussion and Conclusions
	References
	Figures and Tables
	Appendix




