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Abstract 
 
Testing students and using test information to hold schools and, in some cases, teachers 
accountable for student achievement has arguably been the primary national strategy for school 
improvement over the past decade and a half. Tests are also used for diagnostic purposes, such as 
to predict students at-risk of dropping out of high school. But there is policy debate about the 
efficacy of this usage, in part because of disagreements about whether tests are an important 
schooling outcome. We use panel data from three states – North Carolina, Massachusetts and 
Washington State – to investigate how accurate early test scores are in predicting later high 
school outcomes: 10th grade test achievement, the probability of taking advanced math courses in 
high school, and graduation. We find 3rd grade tests predict all of these outcomes with a high 
degree of accuracy and relatively little diminishment from using 8th grade tests. We also find 
evidence that using a two-stage model estimated on separate cohorts (one predicting 8th grade 
information using 3rd grade information, and another predicting high school outcomes with 8th 
grade information) only slightly diminishes forecast accuracy. Finally, the use of machine 
learning techniques increases accuracy of predictions over widely used linear models, but only 
marginally. 
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1. Introduction 

Testing students annually and using the results to inform policy decisions, including school 
accountability, has been one of the primary federal and state strategies for identifying and 
addressing educational inequity over the past two decades.1 There is a considerable amount of 
policy disagreement about the value of tests for accountability, identifying learning gaps, and/or 
the amount of testing that occurs (e.g., Forte, 2021; Koretz, 2017; Strauss, 2015). Some of this is 
likely due to doubts about the extent to which tests at one point in time predict both later test and 
non-test outcomes (Goldhaber and Özek, 2019). 

Tests are also intended to be useful as informative and diagnostic tools for educators and 
parents, allowing schools to communicate about student needs and tailor instruction and 
interventions. Several states and localities use state assessments in early warning systems to 
predict whether students are at-risk of not meeting specified academic outcomes. But existing 
systems rely on predictions that typically only span a few grades and do not harness the potential 
for long panels of data to assess high school outcomes based on elementary test achievement.2 

Understanding the degree to which we ought to rely on test scores either for accountability or 
diagnostic purposes depends fundamentally on their predictive power. Predictions of long-term 
student outcomes are useful only if they are reasonably accurate: imprecision in predictions 
could result in poor allocation of school resources, for remediation, for instance. And, in terms of 
providing parents and families with information, inaccurate information might falsely reassure 
them about their children’s future schooling prospects or cause unneeded concerns.3 

In this paper, we use panel data from three states – North Carolina, Massachusetts, and 
Washington – to investigate how accurate early measures of student achievement are in 
predicting later high school outcomes. We contribute to the literature in four distinct ways. First, 
the long panels we employ allow us to quantify the accuracy of models predicting how early (3rd 
and 4th grades) measures of student background and achievement predict several later schooling 
outcomes including high school test achievement, high school course-taking, and high school 
graduation. Second, we test the extent to which predictions based on distinct segments of student 
data (e.g., 3rd to 8th grade, then 8th to 12th) sacrifice forecast accuracy (which is of particular 
policy relevance for states or localities that do not yet have long administrative data panels). 
Third, we test the degree to which the use of parameter estimates from models predicting 
schooling outcomes derived from one state diminish the accuracy of predicting outcomes in 

 
1 Test-based accountability predated the 2001 passage of the federal No Child Left Behind (NCLB) Act, but NCLB 
made it mandatory for states to use tests for a variety of accountability and reporting purposes. For more on 
accountability and its effects, see Figlio and Loeb (2011). 
2 Chicago (Allensworth, 2013) and Massachusetts (Curtin et al., 2012) are good examples of such systems. 
Limitations of early warning systems have been driven by the underlying data available for the predictions, which 
often has not included test scores that span early elementary years through high school. But this is rapidly changing. 
All states since 2005-06 have been testing students annually in math and reading in 3rd through 8th grade as a result 
of the No Child Left Behind Act passed in 2002 (Le Floch et al., 2007). 
3 A related issue, which arises irrespective of the accuracy of the information, is whether the provision of 
information itself might adversely affect student achievement. Dee (2014), for instance, finds evidence from a 
framed field experiment that primed awareness of negative student-athlete stereotypes reduced athlete test scores by 
12% relative to non-athletes.  
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other states. Finally, we compare the accuracy of long-term student outcome predictions using 
machine learning techniques to generalized linear models. 

Using generalized linear and nonlinear models, we find that students’ 3rd grade test scores 
predict their high school outcomes nearly as accurately as their 8th grade test scores. For instance, 
educational achievement models based on 8th grade test scores and demographics correctly 
classify 70% of high school graduates while misclassifying only 28% of non-graduates. That is, 
the models identify most of the struggling students who will fail to graduate high school without 
incorrectly identifying very many who will eventually graduate.  When 3rd grade test scores are 
used in place of middle school tests, there is little degradation of the accuracy of the predictive 
models, correctly classifying 65% of graduates with the same misclassification rate, suggesting 
that the trajectory of student achievement tends to change little from 3rd to 8th grade. While 
Allensworth and Easton (2007) find that 9th grade characteristics correctly classify 85% of 
graduates while misclassifying 28% of non-graduates, a larger panel of student information, such 
as GPA, credit completion and number of course failures, is used to do so. Machine learning 
improves average prediction accuracy, but only slightly, from one to 10% according to under the 
curve (AUC) measures depending on the method, outcome in question, and the elementary 
grades included. And the student outcome predictions based on machine learning techniques are 
highly correlated (over .85) with those generated by more widely used generalized linear models. 

We also find that predictive models travel across state lines. That is, we can use student 
achievement data and parameters from one state as the basis for predicting students’ educational 
outcomes in another state without substantially degrading forecast accuracy. As an example, in 
terms of predicting the likelihood of high school graduation in Massachusetts, our findings show 
that 3rd grade test scores accurately classify 71% of graduates while misclassifying 28% of non-
graduates using prediction parameters estimated from Massachusetts data. If instead we use 
prediction parameters that are based on data on Washington students, the accuracy is only 
slightly degraded: 70% of Massachusetts graduates are accurately classified and 28% non-
graduates are misclassified.4 This analysis suggests that after knowing a student’s personal 
characteristics and 3rd grade achievement levels, relatively little may be gained by knowing the 
state in which the student attends school. 

Finally, consistent with existing evidence (e.g., Austin et al., 2020; Lee, 2002; Reardon, 
2016), poverty and race/ethnicity are strongly predictive of high school outcomes controlling for 
students’ elementary test achievement, and the magnitude of these demographic variables are 
educationally meaningful. Our models provide yet more bracing evidence of the extraordinary 
challenges faced by students of different backgrounds even when they display the same levels of 
academic mastery. For instance, an economically disadvantaged student (EDS)5 in 3rd grade 
lowers the student’s predicted position in the high school math distribution by 5.8 percentile 
points, the predicted probability of taking an advanced course in high school by 9.7 percentile 

 
4 In other words, with a misclassification rate of 28%, cross-state estimates correctly classify as little as two percent 
fewer graduates compared to in-state estimates. 
5 In response to a directive from the North Carolina Education Research and Data Center, we use the term 
economically disadvantaged student (EDS) to refer to students who qualify for free- or reduced-price meals. Thus, 
we use the term EDS throughout for all states. 
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points, and the predicted probability of graduation by 10.2 percentage points. Put another way, 
an EDS in the 3rd grade who is scoring in the highest decile in 3rd grade math test distribution has 
roughly an equal chance of graduating as a non EDS scoring in the second lowest decile. There 
are similar gaps in graduation probabilities between white and underrepresented minority 
students. It is not only less common for low income and minority students to reach high levels of 
achievement – it is more difficult to sustain those levels.     

2. Literature on Predicting Long-Term Student Outcomes 

A number of studies have looked at the degree to which early cognitive and non-cognitive 
student characteristics, including measures of student achievement and engagement predict long-
term outcomes such as later test achievement, high school course-taking and graduation, and 
college-going and labor market earnings.6 But few studies rely on statewide administrative data 
that span elementary grades through high school. The primary reason is that, until recently, only 
a few states had the data infrastructure necessary to reliably link students longitudinally over a 
long grade span.7 And today more than half of the states still do not have easy access to detailed 
longitudinal data spanning 3rd grade to graduation (Data Quality Campaign, 2016). 

Yet a small body of research highlights the value of such data collection for predicting long-
term student outcomes. Hernandez (2011), for instance, reports summary statistics from a 
longitudinal study of nearly 4,000 students and finds that those who don’t read proficiently by 3rd 
grade are four times more likely not to graduate high school on time, with the risk highest for the 
lowest performers, and the effect even more pronounced for EDS status students.8 This widely-
cited report was influential in shaping federal and state early reading intervention strategies; at 
least four states have passed 3rd grade reading laws since the report’s release,9 while other states 
have amended their 3rd grade reading laws multiple times or phased in various requirements 
(CCSSO, 2010).  

Other studies rely on shorter panels but illustrate the importance of early academic indicators 
in predicting future academic success. Goldhaber et al. (2018), for instance, finds significant 
evidence that 3rd grade test scores are strongly predictive of 8th grade test outcomes as well as 
high school math and science course-taking patterns. Two other recent studies show that 
students’ high school GPA is a strong predictor of high school graduation as well as college-

 
6See Murnane et al. (1995), and Cawley et al. (2001), Cunha & Heckman (2006), Heckman et al. (2006), Todd & 
Wolpin (2007), and Cunha et al. (2010). 
7 The Data Quality Campaign, which has been tracking the extent to which states collect “10 Essential Elements of 
Statewide Longitudinal Data Systems” considered necessary to build a highly effective longitudinal data system 
(Data Quality Campaign, 2009). In 2005, fewer than 8 states recorded all elements and less than half of states had an 
audit system in place to assess data reliability. Most lacked information on courses completed, grades earned, and 
student-level college readiness test scores such as Advanced Placement (AP) tests. By 2011 most states met the 10 
essential elements, where at most 9 states did not meet the requirement. 
8 23% of the lowest performing readers do not graduate high school on time, relative to nine percent for basic 
readers and four percent for proficient readers. Furthermore, not only are children who have lived in poverty 3.7 
times more likely to not graduate from high school, but the lowest performing readers in this group are 6 times more 
likely than proficient readers to fail to graduate high school on time. 
9 Several more states brought bills into consideration that ultimately did not pass. 
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going, retention, and graduation (Geiser & Stanelices, 2007; Easton et al., 2017).10 Similarly, 
Silver et al. (2008) follow a cohort of Los Angeles Unified School District students over a seven 
year period and find that test scores as early as 6th grade are predictive of on-time high school 
graduation.  

Zau and Betts (2008) address the feasibility of using earlier elementary indicators for 
predicting long-term academic achievement. Using administrative data to predict the likelihood 
that students pass the California High School Exit Exam (CAHSEE), a formerly required 
component of California’s school accountability program,11 the authors find evidence suggesting 
predictions using 4th grade test scores and student characteristics have nearly the same accuracy 
as predictions using the same metrics observed in 9th grade, highlighting administrators’ ability 
to easily identify and provide assistance to at-risk students as early as elementary school. 
Furthermore, the authors’ results “strongly suggest eleventh-hour interventions by themselves 
are unlikely to yield intended results,”12 raising a general concern for the time necessary for 
successful intervention. While promising, this study is primarily limited by its scope of outcome 
data; only one test-based outcome is considered, and the CAHSEE is written for a 
comprehension level of 10th grade English and 8th grade math—having closer comparability to 
elementary and middle school tests than other high school standardized testing, such as the SAT. 

Several studies have also illustrated the importance of the scope of student input data, 
correlating broader indicators of school attachment or academic success with students’ long-run 
outcomes. For example, a 2007 study by Neild et al. showed that 75% of Philadelphia 6th graders 
with either a final grade of “F” in math or English, below an 80% annual attendance rate, or an 
unsatisfactory behavior mark eventually dropped out. In addition, Allensworth and Easton 
(2005) find that students having accumulated five full course credits with no more than one 
semester “F” in a core subject is more indicative of high school graduation than standardized test 
scores for Chicago Public Schools students.13  

The growth of both data availability and interest among parents, teachers, and policymakers 
have inspired proprietary work to begin developing methods for providing schools with accurate 
early warning indicators. Sorenson (2018) uses Support Vector Machines, Boosted Regression 
and Post-LASSO to explore the classification accuracy of eventual dropout for 9th graders 
participating in the High School Longitudinal Study survey of 2009, accurately classifying 89-
90% of dropouts while misclassifying 16-28% of dropouts. With over six million student-year 
observations from 6th to 12th grade across 32 states, Christie et al. (2019) use gradient-boosted 
decision trees to predict the risk of dropout of students. The authors use a wide range of current 
and historical yearly predictors, including attendance, academic performance, behavior, 
household and enrollment stability, and other contextual information, finding high dropout 
prediction accuracy. However, the primary pitfall of such machine learning algorithms is an 
inability to assess the contribution of each predictor independently—an important aspect of 

 
10 They also find that overall high school GPAs are highly correlated between freshman and junior year, suggesting 
the ability to predict future outcomes in as early as 9th grade. 
11 The CAHSEE was suspended effective January 1, 2016. 
12 They find of those in San Diego who failed to graduate in spring 2006 because of the CAHSEE, only 27% re-
enrolled the next year, and only 3.1 percent passed in the following year. 
13 Core subjects include English, math, science, or social studies. 
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communicating results and actionable solutions to families. The methodology may accurately 
classify a young student as, for instance, a dropout risk, but this may be of limited value as it 
does not provide much information about precisely why students are at-risk of dropping out. 
Similarly, Sorenson (2019) explores decision tree methodologies to assess the risk of dropout has 
been recently implemented in North Carolina and finds that while logistic regression correctly 
classifies 40% of graduates while misclassifying eight percent of non-graduates, boosted 
decision trees increases the correct classification of graduates by approximately 20% at the same 
misclassification rate.14 

The importance of both identifying at-risk students and creating actionable information is 
underscored by some states and localities already employing early warning indicator systems 
using longitudinal data analysis. In 2005, South Carolina began development of a longitudinal 
database, containing students as far back as 3rd grade and following them into high school, to be 
used by school personal such as counselors and administrators responsible for local at-risk 
models. In 2006, Maine implemented a K-12 integrated data system allowing for the assessment 
of likelihood of dropout using 9th grade indicators, and by 2012 started revising student data 
collection to expand early education indicators. In 2010, Massachusetts began developing an 
Early Warning Indicator System leveraging P-12 data to predict proximate outcomes, such as the 
likelihood of reading proficiency in 3rd grade and passing all 9th grade courses, and soon after 
released a state-wide Early Warning Indicator Index using academic and behavioral student 
characteristics15 to identify drop-out propensity by risk level of first-time 9th grade students in 
large urban districts (Curtin et al., 2012). The steady release of such systems communicates a 
necessity for a robust prediction method that not only identifies whether students are at-risk but 
communicates actionable information to their stakeholders. 

Most closely related to the work we describe here is a working paper by Austin et. al (2020) 
which uses administrative data from six states to study the extent to which a student’s rank in the 
distribution of academic performance changes during their schooling career. Using test score 
data from 3rd grade, the authors predict percentile rank of student test scores in 8th and 10th 
grades and high school graduation. They focus on the extent to which there is variation between 
districts in academic mobility, i.e., movement of students in the test or graduation probability 
distribution since 3rd grade. While they find there is significant heterogeneity across districts in 
academic mobility, 3rd grade test scores are highly predictive of students’ positions in high 
school test and graduation probabilities in all states.16 

The growing body of research clearly shows increasing interest in predicting long-term 
student outcomes, how early measures of student characteristics and achievement are associated 
with these outcomes, and finally, providing actionable information for individual student 
improvement. There are limitations, however, to the studies described above. None, for instance, 
examine the degree to which early test scores predict advanced course-taking, the degree to 

 
14 See also Christie et al. (2019), which uses gradient-boosted decision trees to predict the risk of dropout. 
15 Student characteristics include spring 2011 8th grade MCAS results, spring 2011 8th grade English Language Arts 
(ELA) scores, 2010-11 attendance rates, number of suspensions in the 2009-10 and 2010-11 school years, and age as 
of September 1st, 2011. 
16 For instance, the coefficient indicating the relationship between a student’s position in the 3rd grade test 
distribution and the 10th grade English Language Arts test distribution is the neighborhood of 0.8. 
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which segments of test distribution information (e.g., 3rd to 8th grade and then 8th grade to high 
school graduation) may be pieced together to make long-term student outcome predictions, and 
the degree to which estimates of relationships from one state provide accurate assessments of 
outcomes for students. We use the data described in the following section to focus on these 
issues. 

3. Data Sources, Sample Inclusion, and Measures 

To assess the predictive capacity of early-education student characteristics on long-term 
outcomes, we use longitudinal student panels from Massachusetts, North Carolina, and 
Washington, including student characteristics and test scores from 3rd grade up to 12th grade 
between 1998 and 2018 which, depending on the outcome and state, contain as many as 11 
cohorts of students.17 The data across the three states are similar in that for each state we have 
measures of historical test scores, student characteristics, and three long-term high school 
outcomes: test scores in high school, advanced course-taking in high school, and high school 
graduation. 

The Massachusetts longitudinal student data combines annually reported test scores from the 
Massachusetts Comprehensive Assessment System (MCAS), course membership information 
from the Student Course Schedule, and demographic information and high school exit codes 
from the Student Information and Management System, all of which are provided by the 
Massachusetts Department of Education. The North Carolina longitudinal student data combines 
annual North Carolina Education Research Data Center End-of-Grade files, Masterbuild files, 
and AP course membership files, which include student-level characteristics such as URM and 
EDS status,18 AP course taking behavior, and high school exit codes. The longitudinal student 
data in Washington combines the state’s Core Student Records System and Comprehensive 
Education Data and Research System both maintained by the Office of the Superintendent of 
Public Instruction, which detail student-level characteristics such as URM and EDS status and 
high school exit codes as well as AP course membership. 

This panel allows us to leverage students’ standardized test scores throughout their academic 
career and link these scores to their high school course-taking patterns and graduation. There are, 
however, reasons to be cautious about generalizing our findings. The first is that the high school 
outcomes we investigate, while similar, may vary across states. Indeed, even in the three states 
we utilize, they are somewhat inconsistent. For instance, in the case of test scores, the majority of 
students in Massachusetts take a high school math test in the 10th grade, whereas the majority of 
students taking a math test in North Carolina and Washington varies by grade depending on the 
year. We circumvent this by limiting high school math test sample to cohorts with standardized 
testing regimes across students and calculate test score percentiles by grade, year, state, and test 

 
17 We observe partial cohorts of students for years following 2013 due to earlier-than-expected positive outcomes 
but do not include them in our analysis. For example, we observe 1,016 3rd grade students in 2008-2009 graduating 
prior to the end of 12th grade, but since we do not have access to data in 2018-2019, we do not see any students who 
would have graduated at a normal pace. 
18 Recall that EDS is an indicator that a student qualifies for free- or reduced-price meals. 
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type.19 Similarly, standards for what constitutes advanced course taking or high school 
graduation may also vary across states (we discuss this more below). 

A second concern is that, given the nature of the study, it is necessary to restrict our sample 
to students who were enrolled in public schools in the 3rd grade and have at least one public 
school high school outcome, also in a public school. Students may exit the sample by 
transferring to private or homeschool within the state, transferring out of the state, enrolling in-
state but not attend school in the following year, or otherwise having an unknown exit status.20 

In Figure 1, we show the average percentage of 3rd grade cohorts who are observed in 
subsequent grades by grade and by state to provide a sense of the nature of attrition. While it is 
possible that 3rd grade students in the sample may leave the sample and return in a later grade, 
the lines are monotonically decreasing across all three states. Attrition between 3rd grade and 
high school is between 15-30% of students in the three states but is considerably higher in North 
Carolina than in Massachusetts and Washington, where the average attrition from 3rd grade 
cohorts is quite consistent from grade-to-grade. It may be that these differences are attributable 
to features of the states’ educational landscape such as trend in private school enrollment or 
compulsory education laws,21 but detailed exploration of differences in sample attrition across 
states is outside the scope of this study.  

Regardless of the reason for it, sample attrition is potentially problematic in assessing 
predictive power of early academic measures on high school outcomes for an average 3rd grader. 
For example, predictions will be biased if there are unobserved attributes of students who leave 
the samples that are correlated with the likelihood of out-of-state mobility, 3rd grade test scores, 
and high school achievement. While we are unaware of any direct evidence on this issue, there is 
ample evidence on the role of parental involvement on student outcomes (e.g., Castro et al., 
2015; Henderson, 1994; Wilder, 2014) and that low-income families, who also tend to have 
lower achieving students (Reardon, 2011), are more likely to be mobile (Mehana & Reynolds, 
1995, 2004). Thus, it is no great leap to imagine that unobserved attributes are correlated with 
mobility and achievement.22 Such a relationship would lead to bias in the estimated parameters 
of the model (we describe how we address the potential issues associated with missingness bias 
in Section 4.1). 

 
19 All cohorts in Massachusetts take a standardized math test in 10th grade, only a single observable cohort in our 
sample Washington takes a standardized assessment in 11th grade, 83% students in North Carolina take an 11th grade 
test in 2006, and over 97% of students take an 10th grade test in 2008-2011. North Carolina has a transition year in 
2007 where 93% of students take either the 10th or 11th grade equivalent math test. 
20 That is, we begin with the 3rd grade cohort in a state and year and follow that cohort longitudinally. We do this for 
all 3rd grade cohorts in each state and average the cohort retention results. 
21 For instance, there are also differences in compulsory education laws: under North Carolina’s compulsory 
education laws, most students can legally drop out as soon as they turn 16, whereas in Massachusetts and 
Washington students must attend school until age 18. But the pattern of year-to-year attrition in Figure 1 does not 
reflect a sharp divergence between states in high school, which is what one would expect were the differences in 
attrition to be related to compulsory education requirements. Though this is outside the scope of our analysis, it may 
be that there are state-to-state differences in private school enrollment or homeschooling. 
22 Parents of low-achieving students who tend to contribute more to their children’s academic success (e.g. 
encouraging them to do homework) might, for instance, be expected to try to keep their children in a stable 
educational setting. 
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In addition to the restriction of the state samples associated with attrition, we also restrict our 
outcome measures for comparability across cohorts. Since we consider five-year graduation rate 
and advanced course-taking at any point in high school, in order for students in our analyses to 
be assigned a graduation or advanced course-taking outcome we require that they are either 
observed up to 12th grade, observed graduating within 5 years of entering high school, or 
observed dropping out, and only consider students where these conditions are possible to assess. 
Similarly, we only include students where these conditions can feasibly be observed for the 
entire cohort. 

The number of cohorts we use for our analytic sample from each state varies according to the 
length of the administrative panel available. North Carolina has up to 11 cohorts and the largest 
samples per cohort, with the first cohort in third grade starting in the 1997-1998 school year. The 
average cohort for North Carolina is 67,460 for graduation outcomes, 66,840 using advanced 
course-taking outcomes, and 77,875 using high school testing outcomes. The samples in 
Massachusetts (three cohorts, with the first cohort enrolled in third grade in the 2006-2007 
school year) and Washington23 (four cohorts, with the first cohort enrolled in 3rd grade in the 
2005-2006 school year) are similar with about 47,000 to 55,000 for the various outcomes. The 
specific sample sizes for each of the later high school outcomes we observe for the analytic 
sample are provided in Table 1. A notable discrepancy across states is in regard to high school 
math test outcomes, due to inconsistencies over time in standardized testing requirements. While 
Massachusetts has had a standardized state test continue throughout our panel, North Carolina’s 
longest panel of comparable high school begins for students attending 3rd grade in 2006, and 
Washington did not fully phase a single standardized test requirement until 2018-19, 
corresponding to 3rd graders in 2010-11, the last observable year in our 3rd grade panel. 

The table also provides selective descriptive statistics by state. Each state differs somewhat in 
their racial and socio-economic distribution, the biggest differences being a much larger 
proportion of African American students in North Carolina (27%) than the other two states (5% 
to 8%), and a notably smaller population of Asian and Pacific Islander students in North Carolina 
(two percent) than the other states (6% to 9%).   

Of the 3rd graders that we track to high school, graduation is relatively similar across the 
states, in the range of 80-90% across individual cohorts.24 Advanced course-taking varies 
significantly more: while 59% of students in the sample were found to take at least one advanced 
math or science course in Washington, and 69% in North Carolina, only 48% of students in 
Massachusetts are identified as taking an advanced math or science course. These differences are 

 
23 In 2009 there is a large decline in 3rd grade cohort size in Washington state for high school test score outcomes 
due to switching of high school testing schema over observed years, and approximately one third of Washington 
State schools participated in the state’s Smarter Balanced Assessment pilot in the 2013–14 school year, so 
elementary test scores are not available in 2013–14 for students in these schools. 
24 We calculate an average graduation rate in Massachusetts of 91%, an average rate in North Carolina of 87%, and 
an average rate in Washington of 84% These calculated graduation rates are relatively similar to the recent state 
reports of high school graduation rates of 88% for Massachusetts in 2018 (according to the Massachusetts 
Department of Education, see http://www.doe.mass.edu/infoservices/reports/gradrates/), 86% for North Carolina in 
2017 (NCES, 2020), and 79.3% for Washington in 2016 (Weaver-Randall & Ireland, 2018). 

http://www.doe.mass.edu/infoservices/reports/gradrates/
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likely based on the definitions of the advanced course-taking measures.25 For North Carolina and 
Washington, we use high school course names and a course taxonomy developed by Burkam et 
al. (2003) to identify advanced math and science courses, whereas in Massachusetts we use an 
indicator of advanced courses in combination with a subject area course code provided by the 
state (Massachusetts Department of Education, 2018); this indicator more narrowly defines what 
is an advanced course than is defined by Burkam et al.. Because we do not have course names in 
Massachusetts, we cannot directly assess the similarities of these courses to those in North 
Carolina and Washington, though as we show below (in Section 5), the findings for 
Massachusetts on advanced course-taking turn out to be similar to those for the other states. 

Finally, we see similar patterns across the three states based on the quartile of 3rd grade math 
test achievement; lower scoring students tend to be disproportionately represented by various 
measures of student disadvantage (e.g., being EDS, or being in an URM category). And, not 
surprisingly, lower scoring students also tend to have substantially less positive high school 
outcomes. 

4. Empirical Approach 

Our empirical approach is designed to assess the accuracy of predicting high school 
outcomes based on 3rd grade test scores, identifying the early student characteristics most 
influential of the high school outcomes, and the amount of information lost in these predictions if 
we predict across states or in multiple stages. We look at three primary outcome measures: high 
school test scores in mathematics, advanced course-taking behavior, and graduation.  

4.1 Analytic Approach 

To assess the relationship between 3rd grade test scores and high school math score percentile 
𝑀𝑀𝑖𝑖
𝐻𝐻𝐻𝐻 we estimate both oft-used generalized linear models and more recently developed machine 

learning techniques for generating predictions. We begin by following the approach in Austin et 
al. (2020), which models the ranking of students in the high school math test distribution as a 
function of 3rd grade test ranking and observable student characteristics:26  

𝑀𝑀𝑖𝑖
𝐻𝐻𝐻𝐻 = 𝛽𝛽0 +  𝑇𝑇𝑖𝑖′𝛽𝛽1 + 𝑋𝑋𝑖𝑖′𝛽𝛽2 + 𝜍𝜍𝑖𝑖𝑇𝑇𝑖𝑖′𝛽𝛽3 + 𝜍𝜍𝑖𝑖 + 𝛿𝛿𝑖𝑖 +  𝜀𝜀𝑖𝑖, (1) 

Specifically, in (1), 𝑇𝑇𝑖𝑖 is a vector of 3rd grade math and reading test score percentile categorized 
by subject for student 𝑖𝑖, 𝑋𝑋𝑖𝑖 is a vector of student 𝑖𝑖′𝑠𝑠 characteristics including race, gender, 
disability status, English language learner (ELL) status, EDS status, and enrollment status in 
special education, 𝜍𝜍𝑖𝑖 is a state fixed effect, 𝛿𝛿𝑖𝑖 is a year fixed effect, 𝜍𝜍𝑖𝑖𝑇𝑇𝑖𝑖 represents a state-test 
score percentile interaction, and 𝜀𝜀𝑖𝑖 is a mean-zero error. We interact the state and year fixed 
effects with the vector of 3rd grade math and reading test score percentile. Our primary focus is 
on 𝛽𝛽1, which indicates the relationship between 3rd grade tests and high school outcomes (high 

 
25 As a robustness check, we code an alternative definition of advanced course-taking in MA by following the course 
taxonomy of Burkam et al. (2003). We find a correlation of .76 in advanced course between the two definitions, and 
a correlation of .86 in the resulting predictions. 
26 We discuss how sample attrition may affect estimates and model prediction in Section 5.3. As we describe in that 
section, sample attrition does have much impact on model predictions. 
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school math tests in (1)), which is recoverable from the marginal effects of the math and reading 
test scores.27  We also estimate several extensions of the above model, including replacing or 
supplementing 3rd grade test rankings with 8th grade rankings on math and English Language 
Arts (ELA) tests, estimating the various specifications separately by state, and estimating models 
with 8th grade math score percentile as an outcome.28  

 For each binary outcome, whether students take advance courses and graduate from high 
school, we estimate a conditional probit model defined by: 

𝑃𝑃(𝑌𝑌𝑖𝑖 = 1 |𝑇𝑇𝑖𝑖 , 𝑋𝑋𝑖𝑖) =  Φ(𝑍𝑍𝑖𝑖),     (2a) 
 

𝑍𝑍𝑖𝑖 =  𝛽𝛽0 +  𝑇𝑇𝑖𝑖′𝛽𝛽1 + 𝑋𝑋𝑖𝑖′𝛽𝛽2 + 𝜍𝜍𝑖𝑖𝑇𝑇𝑖𝑖′𝛽𝛽3 + 𝜍𝜍𝑖𝑖 +  𝛿𝛿𝑖𝑖 + 𝜀𝜀𝑖𝑖 , 

 

(2b) 

where 𝑌𝑌𝑖𝑖 is the outcome,  Φ(⋅) is the cumulative normal distribution, and 𝑇𝑇𝑖𝑖, 𝑋𝑋𝑖𝑖, 𝜍𝜍𝑖𝑖 , 𝛿𝛿𝑖𝑖 are 
consistent with (1) above, and we also assume that 𝜀𝜀𝑖𝑖 is a mean-zero error term. And, as above, 
we estimate specifications of (2) which either replace or supplement 3rd grade test rankings with 
8th grade rankings on math and ELA tests, and estimate these specifications separately by state. 
Furthermore, we estimate the above models on two additional outcomes: an indicator for scoring 
in the top half of the testing distribution for 8th grade math and high school math.29 

While the 𝑅𝑅2 and Pseudo-𝑅𝑅2 of the above specifications give some indication of model 
fit across different specifications, these are not necessarily representative of out-of-sample 
prediction accuracy. Thus, below (in Section 4.2) we define metrics to allow us to assess the 
accuracy of out-of-sample predictions that, in particular: 1) are based on the classification of 
students into categories; 2) allows us to assess the extent to which using earlier (3rd grade) test 
score information leads to different predictions than later (8th grade) test information, and how 
the omission of one diminishes the fit of the model; and 3) compare the efficacy of using cross-
state models and segments of achievement data (grades 3 to 8 then 8 to 10) to make long-term 
outcome predictions.30 

There is evidence (Austin et al., 2020) that rank-rank relationship in test score outcomes 
is essentially linear in models such as those above, we are unaware of similar evidence when it 
comes to advanced course taking or high school graduation. Thus, to explore non-linearities and 
the possibility that the relationship between 3rd grade tests and high school outcomes is different 
based on students’ 3rd grade background characteristics, we supplement the above models with 

 
27 Note that because test scores noisy measures of student learning 𝛽𝛽1will be biased downward. It is possible to 
correct for this, as in Austin et al. (2020), using the standard errors of measurement (SEMs) associated with 3rd 
grade test scores across cohorts. We opt not to do this given that our interest is in estimating how well 3rd grade tests 
predict later achievement, so, for our purposes, it makes sense to use imperfect (noisy) test measures. 
28 The estimation of separate state models is important for testing the degree to which estimates from one state can 
reliability be used for generating predictions of student achievement in a different state. Results for this additional 
outcome is presented in Appendix B Table B1. 
29 Results for these additional outcomes are presented in Appendix B Table B1. 
30 In doing out-of-sample predictions, we omit year and cohort fixed effects. 
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more flexible specifications in which we include decile of test score achievement in 3rd grade and 
interactions between these deciles and student characteristics.  

Relatedly, there is growing interest in the use of machine learning (ML) techniques for 
generating out-of-sample predictions. While these techniques are not widely used in education, 
they have been used in fields such as medicine (Kourou et al., 2015), genetics and genomics 
(Libbrecht & Noble, 2015), and time-series forecasting (Bontempi et al., 2012).  

 
We use three ML approaches, described in greater detail in Appendix A, for predicting 

high school outcomes: 1) Kernel Support Vector Machines (kSVM), 2) Random Forest 
Classification (RFC), and 3) Gradient Boosted Decision Trees (GBDT). The advantage of these 
approaches over traditional generalized linear models is their flexibility in modeling our binary 
as nonlinear functions of the student characteristics. kSVMs model nonlinearities using a 
function of the distance between two points referred to as a “kernel”. RFCs and GBDTs both 
improve prediction by iteratively splitting students along a single dimension of their observable 
characteristics according to what best separates graduates from non-graduates, or advanced 
course-takers from those that do not. This iterative splitting results in each student falling into a 
“bin” based on their observable characteristics, with the end goal that the majority of students in 
the same bin having the same outcome and allows for representation of complex nonlinear 
relationships. The difference is how the methods deal with overfitting while keeping high 
prediction accuracy. RFCs do this by averaging many classification models using random 
subsets of variables, whereas GBDTs increase accuracy by iteratively modeling the residuals 
generated by the prior classification tree. 

 
While kSVMs tend to handle high dimensional data, avoid overfitting, and perform well 

when there is clear separation between classes, their accuracy depends largely on the arbitrary 
choice of an appropriate kernel, model estimation has a computational complexity cubic in the 
number observations (Abdiansah & Wardoyo, 2015), and they do not produce any interpretable 
probabilities of membership. RFCs and GBDTs are less computationally expensive to estimate 
but tend to overfit data with lower sample sizes (e.g., Bramer, 2007).  
 
4.2 Measuring the Accuracy of Out-Of-Sample Predictions 
 
 A natural evaluation metric for predicting math test score percentile is root mean squared 
error (RMSE), as it is both in accordance with the minimization criterion for linear regression 
and penalizes larger deviations more heavily. But, how to compare the accuracy of student 𝑖𝑖’s 
predicted probabilities �̂�𝑝𝑖𝑖 relative to dichotomous outcome variables is less straightforward. We 
focus on student 𝑖𝑖’s high school graduation, which we will refer to as 𝑌𝑌𝑖𝑖 , without any loss of 
generality. Assignment of the model predicted probabilities to a positive (graduated, 𝑌𝑌𝑖𝑖 = 1) or 
negative (did not graduate, 𝑌𝑌𝑖𝑖 = 0) outcome depends on a threshold value 𝑐𝑐 (i.e., we say a 
student graduates when �̂�𝑝𝑖𝑖 ≥ 𝑐𝑐). However, the categorization of whether students graduate 
depends crucially on the choice of c, and thus the number of Type I (students being predicted to 
graduate when they don’t) and Type II (students being predicted not to graduate when they do) 
errors. As in Christie et al. (2019) and Geiser and Stanelices (2007),31 we alleviate this issue by 

 
31 Geiser and Stanelices (2007) report the concordance rate, a small variation on the AUC which discounts points 
predicted to have equal success and failure probabilities. 
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reporting the Area Under the Curve (AUC) as an evaluation metric, which considers all choices 
of the threshold value, c, during model comparisons.  

Define the True Positive Rate (TPR) and False Positive Rate (FPR) as 

𝑇𝑇𝑃𝑃𝑅𝑅(𝑐𝑐) =  ∑ 𝟏𝟏(𝑝𝑝�𝑖𝑖≥𝑐𝑐, 𝑌𝑌𝑖𝑖=1)𝑖𝑖
∑ 𝑃𝑃(𝑌𝑌𝑖𝑖=1)𝑖𝑖

,   𝐹𝐹𝑃𝑃𝑅𝑅(𝑐𝑐) =  ∑ 𝟏𝟏(𝑝𝑝�𝑖𝑖≥𝑐𝑐,𝑌𝑌𝑖𝑖=0)𝑖𝑖
∑ 𝑃𝑃(𝑌𝑌𝑖𝑖=0)𝑖𝑖

,        (3) 

where 𝟏𝟏(𝐸𝐸) = 1 if the event  𝐸𝐸 is true and 0 otherwise. In other words, the FPR is the proportion 
of non-graduates that we misclassify as graduating, and the TPR is the proportion of graduates 
that we correctly classify as graduating.32  

Letting 𝐹𝐹𝑃𝑃𝑅𝑅(𝑐𝑐) = 𝑥𝑥, we define the Receiving Operator Characteristic (ROC) curve as a 
function over cut points defined as 𝑓𝑓(𝑐𝑐) =  𝑇𝑇𝑃𝑃𝑅𝑅(𝐹𝐹𝑃𝑃𝑅𝑅−1(𝑥𝑥)). This allows for a visualization of 
the classification accuracy of binary models across the entire range of 𝑐𝑐 ∈ [0,1]. For example, a 
perfect model would yield 𝑓𝑓(𝑐𝑐) = 1 for all values 𝑐𝑐, suggesting that all graduates are correctly 
classified no matter what threshold is chosen, including the threshold 𝑐𝑐∗ that allows 𝐹𝐹𝑃𝑃𝑅𝑅(𝑐𝑐∗) =
0. On the other hand, an uninformative model, i.e., equivalent to flipping a coin to make the 
prediction, would yield 𝑇𝑇𝑃𝑃𝑅𝑅(𝑐𝑐) = 𝐹𝐹𝑃𝑃𝑅𝑅(𝑐𝑐), suggesting that the probability of correct 
classification and misclassification are equally likely. 

To characterize the ROC curve across all values of the threshold 𝑐𝑐, we use an evaluation 
metric called the AUC, defined as 

𝐴𝐴𝐴𝐴𝐴𝐴 =  ∫ 𝑇𝑇𝑃𝑃𝑅𝑅(𝑐𝑐)𝑑𝑑𝐹𝐹𝑃𝑃𝑅𝑅(𝑐𝑐)1
𝑐𝑐=0 .        (4) 

Rather than representing a predictive model using a single threshold value, equation (4) provides 
an overall metric for model performance across all thresholds comparable across predictive 
models, where an AUC of 1 corresponds to a perfect classification model, and an AUC of ½ 
corresponds to essentially random classification. 

We report traditional goodness-of-fit measures for all models, but we are also interested 
in assessing the out-of-sample prediction accuracy. This is important because unobserved factors 
correlated with cohorts could lead to biased estimates of how well early measures of academic 
achievement predict later outcomes.33 Additionally, there is good evidence that evaluation of 
prediction accuracy metrics on the sample in which a model is estimated tend to be overly 
optimistic, as the model is specifically catered to minimize the sample error (Picard & Cook, 
1984). And, moreover, a primary reason for assessing the predictive power of elementary tests is 
to assess the extent to which they might be relied on for school-based early warning systems, 

 
32 In context of early warning systems, for instance, one might be especially worried about the number of at-risk 
students mistakenly labeled as future graduates. In this case, one might set the threshold 𝑐𝑐 to be relatively high. 
However, this has a direct impact on the TPR—the number of future graduates we correctly classify. The choice of 
the threshold 𝑐𝑐  represents a context-specific tradeoff between the FPR and TPR, which makes model comparison at 
an arbitrary value of 𝑐𝑐 dangerous to generalize. 
33 Shores and Steinberg (2017), for instance, find that the economic shock of the Great Recession negatively affected 
student achievement.  
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such as those described in Section 2, and/or to provide parents with objective information about 
their students’ likely educational trajectories (e.g., Learning Heroes, 2018).  

 To validate general out-of-sample prediction accuracy we use 10-fold cross validation 
(Hastie et al., 2005). Specifically, we are interested in estimating the expected test error 𝑇𝑇𝐸𝐸: 

𝐸𝐸[𝑇𝑇𝐸𝐸] = 𝐸𝐸[𝐿𝐿(�̂�𝑝(𝑋𝑋),𝑌𝑌)],        (5) 

where 𝑌𝑌 is a random variable associated with an outcome, 𝑋𝑋 is a vector of random covariates,  
𝐿𝐿(⋅,⋅) is an evaluation metric and �̂�𝑝 is the estimated relationship between 𝑌𝑌 and 𝑋𝑋. Specifically, 
without loss of generality, let 𝑌𝑌 = 𝑀𝑀𝐻𝐻𝐻𝐻 be a student’s high school math test, 𝑋𝑋 be a set of 3rd 
grade characteristics, and 𝐿𝐿(�̂�𝑝(𝑋𝑋),𝑌𝑌) =  1

𝑛𝑛
∑ (𝑀𝑀𝐻𝐻𝐻𝐻�−𝑀𝑀𝐻𝐻𝐻𝐻)2𝑖𝑖  be the mean squared error between 

the predicted and actual high school math values. Using a set of observed data (𝑋𝑋� ,𝑌𝑌�) directly to 
calculate (4) can give an overly optimistic notion of our predictive accuracy if the optimal 
parameters of the evaluation metric 𝐿𝐿(⋅,⋅) coincide with the parameters estimated to best fit �̂�𝑝; 
since estimates 𝑀𝑀𝐻𝐻𝐻𝐻� are obtained by minimizing 𝐿𝐿(𝑋𝑋� ,𝑌𝑌�), we would expect this value to be 
smaller than if we were to calculate the squared error on a new dataset. One method of 
circumventing this issue is to randomly split the observations into ten equal partitions 𝐾𝐾1, … ,𝐾𝐾10 
(or, more generally, 𝜅𝜅 partitions) and calculate the expected test error: 

                𝑇𝑇𝐸𝐸� =  
1

10
 � 𝐿𝐿��̂�𝑝𝐾𝐾𝑙𝑙�𝑋𝑋�𝑙𝑙�,  𝑌𝑌𝑙𝑙��

10

𝑙𝑙=1
, 𝑙𝑙 = 1, … , 10        (6) 

where (𝑋𝑋�𝑙𝑙 ,𝑌𝑌𝑙𝑙�) is the subset of (𝑋𝑋� ,𝑌𝑌�) in partition 𝐾𝐾𝑙𝑙 and  �̂�𝑝𝐾𝐾𝑙𝑙 is estimated on the set {𝐾𝐾𝑖𝑖 |𝑖𝑖 ≠  𝑙𝑙}. In 
the context of high school test scores, equation (6) refers to the average mean squared error 
across 10 partitions. Estimates of the expected test error from equation (6) using 10-fold cross 
validation are upward-biased (Varma & Simon, 2006) and provide a conservative estimate of the 
true expected test error in equation (5).  

The predictive validity of out of state models using this procedure may be influenced by 
the relative sample sizes of the state. For example, an out-of-state model may have better out of 
sample predictive accuracy than an in-state model by consistently observing a more complete 
sample of the student population. To deal with this issue, we propose a modification of the above 
cross-validation procedure. For each state 𝑆𝑆 ∈ {𝑀𝑀𝐴𝐴,𝑁𝑁𝐴𝐴,𝑊𝑊𝐴𝐴} we randomly split the sample into 
10 equal partitions, 𝐾𝐾1𝐻𝐻, … ,𝐾𝐾10𝐻𝐻 , and for each partition index we calculate the smallest number of 
observations 𝑚𝑚𝑖𝑖 across all states: 

 𝑚𝑚𝑖𝑖 = min��𝐾𝐾𝑖𝑖𝑀𝑀𝑀𝑀�, �𝐾𝐾𝑖𝑖𝑁𝑁𝑁𝑁�, �𝐾𝐾𝑖𝑖𝑊𝑊𝑀𝑀|�,        (7) 

where | ⋅ | represents the number of observations in the partition. Then for each state 𝑆𝑆 and each 
partition index 𝑖𝑖 we randomly drop observations in each 𝐾𝐾𝑖𝑖𝐻𝐻 until 𝐾𝐾𝑖𝑖𝐻𝐻 = 𝑚𝑚𝑖𝑖. Finally, for each 
state pair (𝑆𝑆1, 𝑆𝑆2), we calculate the expected cross-state test error: 

           𝐴𝐴𝑇𝑇𝐸𝐸�(𝑆𝑆1, 𝑆𝑆2) = 1
10

 ∑ 𝐿𝐿(�̂�𝑝𝐾𝐾𝑙𝑙
𝑆𝑆2�𝑋𝑋�𝑙𝑙

𝐻𝐻1�,𝑌𝑌𝑙𝑙�
𝐻𝐻1)10

𝑙𝑙=1 ,        (8) 



 14 

where (𝑋𝑋�𝑙𝑙𝐻𝐻,𝑌𝑌�𝑙𝑙𝐻𝐻) is the subset of data from state 𝑆𝑆 in partition 𝑙𝑙. When 𝑆𝑆1 = 𝑆𝑆2, this becomes 
estimated within-state test error represented by equation (6). Since randomly dropping student 
observations from the largest states in equation (7) may lead to substantially higher variation in 
the cross-state test error, we repeat the 10-fold cross validation procedure 100 times to ensure a 
representative description of cross-state test error is obtained for each state pair. 

In addition to comparing in-state predictions to out of state estimates, we also provide 
direct correlations between the predictions. However, both of these aggregate measures may 
mask where in the predictive distributions the estimates diverge. To get a sense the degree to 
which the different use of parameters influences predictions throughout the predictive 
distribution, we follow Goldhaber et al. (2019) and first estimate equations (1) and (2) using 
students in Washington, Massachusetts, and North Carolina separately. Then, letting 𝐼𝐼𝐻𝐻 be the set 
of all students who attend state 𝑆𝑆, for each distinct state pair (𝑆𝑆1, 𝑆𝑆2) we estimate the in-state 
predictions from 𝑆𝑆1 with the cross-state predictions from 𝑆𝑆2 using the cubic polynomial model: 

    �̂�𝑝𝑖𝑖,𝐻𝐻1 =  𝛼𝛼0 + 𝛼𝛼1 �̂�𝑝𝑖𝑖,𝐻𝐻2 +  𝛼𝛼2�̂�𝑝𝑖𝑖,𝐻𝐻2
2 +  𝛼𝛼3 �̂�𝑝𝑖𝑖,𝐻𝐻2

3 +  𝜀𝜀𝑖𝑖,        (9) 

where �̂�𝑝𝑖𝑖,𝐻𝐻𝑗𝑗 is the predicted probability of an outcome for student 𝑖𝑖 ∈ 𝐼𝐼𝐻𝐻1 using model coefficients 
calculated on students in 𝐼𝐼𝐻𝐻2. This allows us to see particular aspects of prediction model 
differences. Differences between the estimated mean trend on the right-hand side of equation (9) 
and within-state predicted probabilities �̂�𝑝𝑖𝑖,𝐻𝐻1 represent model variation across different 
magnitudes of outcome probability. For example, since Washington has a lower graduation rate 
than Massachusetts, estimates from Massachusetts may distinguish students with lower 
likelihoods of graduation more poorly than in-state estimates. 

 We follow a similar procedure to assess the use of segments of test score data to make 
long-term projections. We assess this issue because the length of administrative panels in some 
states are limited such that it may not be possible to predict high school outcomes based on 3rd 
grade test scores (Data Quality Campaign, 2016). Thus, it is not possible to predict outcomes, 
like high school graduation, based on 3rd grade test scores. But one could use the parameters 
from models predicting test relationships between third and 8th grade (segment 1) and 8th grade 
tests to high school graduation (segment 2) to predict across the two segments so as to link 3rd 
grade tests to high school graduation. 

 Let the superscripts 𝜌𝜌𝑖𝑖 denote distinct panels of students. We first estimate the relationship 
between third and 8th grade student observables by equation (10a) on a panel of students 𝜌𝜌1, 
estimate the relationship between 8th grade student observables and long-term outcomes by 
equation (10b) on a distinct panel of students 𝜌𝜌2, and with the resulting estimates predict long 
term outcomes using equation (11): 

 𝑍𝑍𝑖𝑖
𝑝𝑝1 = 𝑓𝑓(𝛼𝛼0 + 𝑇𝑇𝑖𝑖

𝜌𝜌1′𝛼𝛼1 + 𝑋𝑋𝑖𝑖
𝜌𝜌1′𝛼𝛼2 +  𝛾𝛾𝑖𝑖),        (10a) 

 𝑌𝑌𝑖𝑖
𝑝𝑝2 = 𝑔𝑔�𝛽𝛽0 + 𝑍𝑍𝑖𝑖

𝜌𝜌2𝛽𝛽1 + 𝜂𝜂𝑖𝑖�, (10b) 

 
  𝑌𝑌𝚤𝚤�   = 𝑔𝑔�𝛽𝛽0� +  𝑍𝑍𝚤𝚤�  𝛽𝛽1� +  𝜀𝜀𝑖𝑖�,  
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         = 𝑔𝑔(𝛽𝛽0� + 𝑓𝑓(𝛼𝛼0� + 𝑇𝑇𝑖𝑖′ 𝛼𝛼1� + 𝑋𝑋𝑖𝑖′ 𝛼𝛼2�)𝛽𝛽1� +  𝜀𝜀𝑖𝑖  ), (11) 

where 𝑋𝑋𝑖𝑖 is a vector of 3rd grade student characteristics, 𝑇𝑇𝑖𝑖 is a vector of student test score 
percentiles, 𝑍𝑍𝑖𝑖 is a vector of 8th grade student characteristics and outcomes, 𝑓𝑓(⋅) and 𝑔𝑔(⋅) allow 
representation of either linear or probit regression models, and 𝛾𝛾𝑖𝑖 , 𝜂𝜂𝑖𝑖 , 𝜀𝜀𝑖𝑖 are mean-zero errors. 
While Appendix A shows we might expect some loss in accuracy, we will show in the next 
section that estimation using this two-stage procedure does not dramatically reduce predictive 
accuracy.  

The capacity for out-of-sample generalizability may be affected both by differences in 
educational landscapes across states and by differences in non-overlapping time periods. For 
example, when using a model trained on graduation probabilities for students in Massachusetts 
from 2007-09 to predict graduation probabilities for students in North Carolina from 1998-2008, 
the relationship between student characteristics and graduation may be different between 
Massachusetts and North Carolina but may have also changed over the course of this decade. We 
test this by using a nested model likelihood ratio test comparing estimates from equations (1) and 
(2) with equivalent models fully interacting year for each state, and overall.34 

5. Results 

5.1 Baseline Findings on Long-Term Predictions 
 
 Our main findings are reported in Table 2, which shows the relationship between 3rd, 8th, 
or both 3rd and 8th grade tests, other student-level covariates (in the 3rd grade) and three high 
school outcomes: percentile on a high school math test, the probability of taking an advanced 
math course, and the probability of graduating.35 While not reported in the table, the models also 
include state and cohort indicators and interactions between these and base year test scores. 
These interaction terms are statistically significant for all outcomes, suggesting that the 
relationships between base year test scores and outcomes differ by state and cohort.36  
 

Columns 1-3 report on models estimating high school math test scores for specifications 
that include: 3rd grade scores (Column 1); 8th grade test scores (Column 2); and both 3rd and 8th 
grade test scores (Column 3). Not surprisingly, prior test scores are highly predictive of high 
school scores. This is true for both math and reading when the tests are entered into the models 
independently, with 3rd grade math and reading scores being smaller in magnitude than 8th grade 
scores. But we also see (in Column 3) that both 3rd and 8th grade tests are significant when 

 
34 Since the model likelihood ratio test does not extend to probit regression, we use a linear probability models on 
binary outcomes. We omit high school math tests in Washington state from this robustness check since there is only 
a single year in the panel. 
35 The high school math test score models are estimated by OLS so the coefficients on base year test scores represent 
the estimated effect of a change in base year test percentile on the change in high school test percentile. The course-
taking and high school graduation probabilities are estimated by probits, but we have converted the coefficients into 
marginal effects, so, for instance, they show how a change in a 3rd grade test percentile is estimated to affect the 
probability of high school graduation. 
36 As we discuss below, while statistically significant, the differences between these relationships across states and 
over time are arguably of minor practical significance. 
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included simultaneously, suggesting that the trajectory of achievement matters for high school 
grade predictions (more on this point below).37  

 
In Columns 4-6 and 7-9 of Table 2 we present analogous specifications for the 

probability of advanced course-taking and high school graduation, respectively. The trends in the 
coefficients on base year test score are similar to those described above for high school tests, 
though the association between base year test scores and these outcomes is smaller. This is 
especially true for the relationship with high school graduation, which is not surprising since the 
large majority of students in the sample do graduate. In particular both third and eighth grade 
tests are statistically significant in the same model for both advanced course-taking (column 6) 
and high school graduation (column 9). This suggests both are important in making predictions 
of these outcomes, however, as we show below (in Section 5.2), it turns out that the predictions 
about high school outcomes are little affected by whether they are generated using third or eighth 
grade tests. 

 
Consistent with prior evidence (e.g., Austin et al., 2020; Hernandez 2011; Zau & Betts, 

2008), there is a strong correlation between early measures of test achievement and later high 
school outcomes. In particular, we show in Table 4 quite strong correlations between a student’s 
place in the distributions of 3rd grade and high school math tests (column 1), and 8th grade and 
high school tests (column 2).  
 

We assess the importance of trajectory by estimating variants of the above models where 
we include math and reading test scores for all permutations of 3rd, 4th, and 5th grade. State and 
year effects are omitted for the purpose of valid out-of-sample prediction. We examine the 
relationship between outcome accuracy measures and the combination of test scores. Table A3 
shows out of sample accuracy metrics for high school math tests, advanced course-taking, and 
graduation. We note that outcomes are differentially affected by the testing grade. For example, 
the root mean squared error is negatively correlated with the grade level, whereas advanced 
course taking and graduation do not have such a correlation. Secondly, confirming recent 
evidence (Fazlul et al., 2021) that there is a diminishment in information due to gaps in student 
test data, we see an increase of .02 in predictive accuracy as measured by AUC when considering 
all three grades at once for advanced course-taking relative to only 3rd grade.38 

 
The trajectory of a student’s elementary test scores also matters for estimates of future 

achievement. As a practical example of these effects, the estimated probability of a student 
scoring in the 30th, 40th, then 50th percentiles in math in 3rd, 4th, and 5th grade, respectively, is 
85%, whereas the estimated probability of a student scoring in the 50th, 40th, then 30th 
percentiles in math in 3rd, 4th, and 5th is 83%. Put another way, the risk of not graduating is 13% 
larger for the student with declining percentile ranking. Trajectory similarly influences advanced 

 
37 Note that 3rd grade reading test scores are actually negative in this model. This is not terribly surprising given the 
strong correlation between 3rd grade math and reading test scores (0.72); when we re-estimate column (3) using 
single subject test scores for both grades, both grades are positive and statistically significant. 
38 Note that Fazlul et al. focus on school and district performance ratings rather than predictions of individual 
student achievement. Testing gaps induce additional issues in estimating school or district performance. For 
instance, assuming that testing starts in the 3rd grade, many schools would have no students with pre- and post-test 
scores for their time in a particular school building (e.g., K-5 school) if test scores are missing for two consecutive 
years. 
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course taking and high school math percentile; the student with a declining trajectory has a 
likelihood of 53% of participating in advanced course-taking and is predicted to score in the 40th 
percentile in high school math, whereas the student with an increasing trajectory has a likelihood 
of 60% to participate in advanced course-taking and predicted to score in the 45th percentile of 
high school math. 

 
Also consistent with prior evidence, holding constant base year test achievement, there 

remain significant differences in test achievement associated with a student’s 3rd grade 
characteristics, with traditionally disadvantaged students (Hispanic and African American, those 
receiving EDS, etc.) predicted to be significantly lower in the high school test distribution. 
Relative to non-EDS students, for instance, EDS students are predicted to be two to six 
percentile points lower in the high school test distribution. 

 
 In Table 3, we estimate models on each of the three states separately. For each state and 
outcome both math and reading 3rd grade test scores are strongly predictive of high school 
outcomes. We also estimate more flexible specifications by estimating each model separately by 
state, allowing all relationships to differ by state, specifying deciles of 3rd grade math and 
reading achievement to allow for nonlinearities in the relationship between 3rd grade 
achievement and high school outcomes, and by interacting those deciles with each student’s 3rd 
grade EDS classification to assess whether the relationships between test scores and high school 
outcomes differ based on their income status.  
 
 Chow tests show that the fit is better for models that are estimated on each state 
separately. Students’ positions in the 3rd grade math distribution are similarly predictive of high 
school graduation to their positions in the 3rd grade reading distribution. Not surprisingly, 
however, 3rd grade math percentiles are much more strongly predictive than reading percentiles 
of advanced course-taking in math and science and high school math test percentiles.39 All else 
equal, a student at the 10th  percentile of the 3rd grade math test distribution rather than the 90th  
percentile is expected to be 38-42 (depending on state) percentile points lower in the high school 
math test distribution, is expected to be 35-41% less likely to take an advanced course in high 
school, and 12-14% less likely to graduate. 

 
Figures 2 to 4 show marginal effects of high school outcome by EDS status and test score 

decile. 40  Specifically, by each decile of math or reading and by EDS status, we plot mean 
probability of graduation, probability of advanced course-taking, and high school math test 
percentile, along with 95% confidence intervals. Visual inspection of the figures shows a linear 
relationship between 3rd grade test percentile and each of the outcomes, with the exception of the 
graduation probability at the tail of the test score distribution; students scoring in the lowest 

 
39 These results hold when predicting 8th grade math percentiles, see Appendix B Table B1.  
40 As noted above, there are also differences by other characteristics, such as student race/ethnicity, but we highlight 
the differences by EDS status because they tend to be much larger than those for the other student sub-groups. 
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decile in math and reading are about 10% less likely to graduate than students in the second 
decile—an effect three times larger than differences across the other adjacent deciles.41,42  

 
These figures also highlight consistent, large effects of EDS status on predictions. 

Specifically, within test score decile EDS students are 8percent to 10% less likely to graduate 
across all test scores for math and reading—approximately the same effect as going from the 2nd 
to the top decile of scores. Furthermore, EDS recipients are 7 to 12% less likely to take an 
advanced course depending on test score decile and positively correlated with test score, 
lowering probability of taking an advanced course in high school as little as a few percent at the 
bottom of the testing distribution, up to eight percent at the top of the distribution. Finally, EDS 
students consistently score three to five percentile points lower on the high school math 
distribution.43,44 
 
5.2 Out-of-Sample Prediction Accuracy 
 

Figures 5 and 6 present ROC curves and related AUC on the entire sample related to 
predicting graduation and advanced course-taking. There is a striking similarity in the precisions 
using 3rd grade student tests, AUC of 0.755, versus 8th grade student tests, AUC of 0.782. Indeed, 
the finding that 3rd grade tests predict high school outcomes nearly as well as 8th grade tests 
might be interpreted as suggesting the need to intervene earlier as these findings are consistent 
with evidence that student achievement gaps form early (von Hipple et al., 2018; Zau and Betts, 
2008) and the trajectory of achievement is little affected during schooling (Austin et al., 2020). 

 
The difference is approximately 40% larger for advanced course-taking, with an AUC of 

0.799 for 3rd and 0.836 for 8th grade, but this is not terribly surprising, since high scores in 8th 
grade ELA may result in direct sorting into an advanced course in ninth grade. Furthermore, 
there is still relatively high predictive power on high school course-taking behavior in 3rd grade, 
suggesting the ability for school systems to conduct earlier and potentially more impactful 
interventions and communicate information to parents about student trajectories for a multitude 
of academic goal posts. 

 
While AUC provides such a standardized quantification of model performance by 

aggregating over all cut points, the measure is not terribly intuitive. Some authors such as 
Allensworth and Easton (2007) and Sorenson (2019) report model performance at specific cut 
points. To facilitate comparison with their work, we also report our predictive accuracies using 
these cut points. With a wide array of 9th grade characteristics, such as GPA, credit completion 

 
41 These patterns hold at the individual state level and using 8th grade math percentile as an outcome. Marginal 
effects by state are presented in Appendix A Figures A22-A32. 
42 Large effects of EDS are also present when predicting 8th grade math percentile, probability of scoring in the top 
half of the 8th grade testing distribution, and probability of scoring in the top half of the high school testing 
distribution. See Appendix A Figures A4-A6. 
43 We test the statistical significance of the differential nonlinear relationship by EDS status by interacting EDS 
status with a quadratic polynomial of test score and find that the coefficients are highly significant (p < 0.001). 
44 Differential effects based on non-academic characteristics are not limited to EDS status. We find that on average, 
some racial and ethnic groups have a different probability of achieving high school outcomes, all else equal. For 
example, American Indians are five percent less likely than white students to graduate, all else equal, and three 
percent less likely to take advanced courses in high school. 
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and number of course failures, Allensworth and Easton (2007) correctly classify 85% of 
graduates while misclassifying 28% of non-graduates. In comparison, our models relying on 3rd 
grade tests and student characteristics correctly classify 65% of graduates while misclassifying 
28% of non-graduates.45 While this difference may seem substantial, characteristics such as 
course-failures in 9th grade are undoubtedly impactful in ensuring high school students graduate 
within four years. Furthermore, Allensworth and Easton (2007) predict on-time graduation, 
which tends to have a stronger relationship with early test scores (Austin et al., 2020). Predicting 
graduation in North Carolina, logistic regression models reported by Sorenson (2019) and our 
models both correctly classify 40% of graduates while misclassifying eight percent of non-
graduates.  

 
Figures 7 to 9 show 10-fold cross validated AUC predicting graduation and advanced 

course-taking, and RMSE predicting high school math tests (as well as 8th grade tests) using 
within-state estimates, cross-state estimates and two-stage estimates.46 Not surprisingly, the 
within-state estimates (i.e., those that use parameters based on models spanning 3rd grade through 
high school) have consistently higher prediction accuracy and consistently lower RMSE than 
cross-state and segmented estimates. However, the information benefit of using within state 
parameters is limited and often statistically insignificant. For instance, in both Massachusetts and 
Washington the within-state estimates for high school graduation are statistically 
indistinguishable from segmented estimates.47,48 

 
In some cases segmented estimates are more accurate than the cross-state estimates. In the 

case of both high school graduation and advanced course-taking, segmented estimates from 
Washington and Massachusetts produce statistically significantly higher AUCs than the cross-
state estimates. When comparing cross-state estimates and segmented estimates for high school 
math scores, segmented estimates perform statistically significantly better than half of the cross-
state estimates. However, while statistically significant, many of these differences are 
inconsequential from a practical standpoint, suggesting that the bias associated with estimating 
models from separate student panels is comparable to the bias associated with differences in state 
education systems.49  

 
The high correlation between model predictions across states, ranging from .835 to .997 and 

shown in Table 5 suggests a large amount of agreement in the relationship between 3rd grade 

 
45 When using 8th grade tests, we classify 70% of high school graduates while misclassifying only 28% of non-
graduates. 
46 Point estimates and 95% confidence intervals for each metric are generated by the observed mean and quantiles of 
the 10,000 values produced by 100 repetitions of 10-fold cross validation for each outcome (Vanwinckelen & 
Blockeel, 2012). 
47 Due to the potential opacity of the AUC estimate, we also show accompanying ROC curves across model 
specification for graduation in each state in Appendix Figures A19-A21. These curves illustrate the striking 
similarity between model specifications across the entire threshold distribution. 
48 Similar patterns are seen when predicting 8th grade test percentile, probability of scoring in the top half of the 8th 
grade math testing distribution, and the probability of scoring in the top half of the high school math testing 
distribution. See Appendix Figures A10-A12. 
49 The segmented parameter models assume students are missing completely at random (MCAR) from their cohorts, 
which may not be the case in practice. 
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student characteristics and high school outcomes.50 However, it is possible that this correlation 
masks divergences in the predictions at different points in the prediction distribution. Thus, 
Figures 10-18 also show pair-plots comparing in-state and cross-state predicted probabilities 
along with the estimated polynomial regression line represented in equation (9). The linear 
relationship between predicted probabilities of graduation between Massachusetts and North 
Carolina suggest that the models share similar information across the probability distribution. 
However, the nonlinear mean trend between both states when compared to Washington, 
particularly in the lower tail of the probability distribution, suggests noisier estimation of the 
most at-risk students. Similarly, the distinct relationship and large variance in predicted 
probabilities for advanced course-taking between North Carolina and the other states suggests a 
poor match between student patterns in advanced course-taking behavior based on 3rd grade 
student characteristics. Finally, as is apparent from Figures 16-18, there is linear relationship 
between predicted probabilities estimated from in-state and cross-state models, suggesting a 
consistently estimated relationship between student test scores across the high school math 
testing distribution.51 

 
5.3 Assessing the Potential Implications of Sample Attrition  

As briefly discussed above (see discussion in Section 3), there is concern that sample 
attrition could lead to biased estimates of the relationship between 3rd grade test achievement and 
high school outcomes, i.e., the estimates for students who remain in the sample may not reflect 
the relationships for the entire sample of students that are first observed in the 3rd grade given 
that students who leave the sample may have a different relationship between their early test 
scores and long-term outcomes than those who stay. Indeed, when we regress sample attrition on 
3rd grade characteristics and decile of test score, we observe a significant negative relationship 
between test score and missing high school outcomes. The likelihood of observation through 12th 
grade for students in the lowest decile of both math and reading achievement, for instance, is 
about 13 percentage points lower than those scoring in the middle of the testing distribution,52 
and EDS students are about 7 percentage points less likely to be observed into 12th grade than 
their non-EDS peers. These findings are consistent with recent evidence that mobility is a 
measure of students being at-risk (Goldhaber et al., 2021). We address the issue in two ways, 
both of which suggest that sample attrition has little impact on the model estimates. 

 
First, we assess model coefficients and predicted outcomes with subsets of the data that 

are defined based on missingness at different points in students’ academic careers. In particular, 
while high school outcomes are missing for some students with unknown exit behavior, we are 
able to see many of their 8th grade test scores. Hence, we can get a sense of potential missing 
data bias by comparing the relationship between early academics for students who have 

 
50 Since North Carolina has a substantially longer panel than other states, exhibiting large changes in yearly rates of 
graduation and advanced course-taking, we adjust predicted probabilities for these year effects. 
51 Estimates travel well across state lines throughout the prediction distribution when predicting 8th grade test 
percentile, probability of scoring in the top half of the 8th grade math testing distribution, and the probability of 
scoring in the top half of the high school math testing distribution. See Appendix Figures A7-A9. 
52 This relationship also holds for each state individually. 
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observable outcomes in high school and those whose highest-grade scores are in 8th grade.53 We 
conduct regression analysis of 8th grade test scores on 3rd grade test scores with and without 
students with missing high school outcomes. The magnitude and direction of the difference in 
the resulting coefficients provide intuition on the severity and direction of potential bias. 54 The 
difference in the magnitude of the relationship between 3rd grade math test percentile and 8th 
grade math test percentile is .03 between the unrestricted and restricted samples, suggesting 
relatively little influence due to sample composition. Similarly, the difference between 3rd grade 
reading test percentile and 8th grade reading test percentile is .006, where these small differences 
hold when analyzing across states. Since we are mainly interested in whether the predictions 
change, we also use the estimates from the unrestricted and restricted samples to generate 
predictions of students’ placement in the 8th grade test distribution. The correlation between the 
restricted and unrestricted samples across all states are greater than 0.99. 

 
Second, we impute outcomes using ad hoc adjustments (see Austin et al., 2020) to test 

score effects for students with missing high school outcome data to bound the potential bias 
arising from a differential relationship between early test scores and high school outcomes. 
Specifically, for each outcome we estimate five variations of models (1) and (2): using student 
test percentile ranks from 3rd through 8th grade, 3rd through 7th grade, 3rd through 6th grade, 3rd 
through 5th grade, and 3rd through 4th grade.55 We then generate imputed values for each outcome 
using the most informative model available for exiters.56 We generate baseline imputations as 
well as ad hoc imputations designed to bound the potential bias. In particular, consistent with 
Austin et al. (2020), we assume that the relationship between 3rd grade tests and high school 
outcomes is increased or decreased by 10% and 25%. We then re-estimate models (1) and (2) 
including students with both imputed and non-imputed outcomes and compare the coefficients 
with our main results in Appendix B Tables B2-B5.  Differences between columns (1) and (2) 
in these tables point to a difference in the distribution of characteristics between students with 
observable and non-observable high school outcomes, whereas differences between columns (2) 
and (3)-(6) represent the potential effect of a different relationship between early test score and 
high school outcome. Regardless of the ad hoc adjustment level, coefficients on 3rd grade math 
and reading test score percentiles deviate from the observable sample by less than .02. This 
striking similarity of coefficients across all outcomes and effect adjustments shows that the 
missingness present in the data is not likely to be a significant source of bias in the estimated 
relationships.  
 
5.4 Comparison with Machine Learning Methods  
 

 
53 This is contingent on the underlying attrition process being similar in 3rd to 8th grade as 9th to 12th grade but exit 
reason after 8th grade may have differential causes. However, exits due to private school, for example, have similar 
rates before and after 8th grade. 
54 It does not, however, provide information about the effect of attrition between third and 8th grade, or the effect of 
attrition on the predictive power of 3rd grade tests on 10th grade test achievement. However, it is reassuring that the 
findings described below are similar if we instead focus on 6th grade test scores as the dependent variable. 
55 Since using this imputation procedure with probit models would require an arbitrary choice of cut point, we 
estimate linear probability models for the binary outcomes. 
56 For each student, we use model estimates based on the longest contiguous span in which they are observed since 
3rd grade. For the sake of imputation, students who exit the sample and return in the span of 3rd through 8th will be 
treated as if they permanently exited. 
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While we expect high school math tests to have a linear relationship with early student 
academic test scores (Austin et al., 2020), we examine the potential improvement in predicting 
graduation and advanced course-taking using from machine learning methods. We compare 5 
models: the probit described in equation (2) of the main paper, “Interaction”, the model in 
equation (2) with the addition of interaction terms, “SVM”, the Support Vector Machine model 
described in Appendix A, the “Random Forest” model described in Appendix A, and Gradient 
Boosted Decision Trees described in Appendix A. In each model we control for 3rd, 8th, and both 
3rd and 8th grade test scores in turn, and all models control for student characteristics including 
race, gender, disability status, English language learner (ELL) status, EDS status, and enrollment 
status in special education. We randomly partition the data into 20% to use as a testing set and 
train on the remaining 80%.  

 
Table A1 in Appendix A shows the resulting AUCs for each of the methods. First, we 

find that there is predictive capacity in the interaction of early academic math and reading test 
score percentile. If we interact math and reading test scores, the models have slightly greater 
predictive accuracy and in the case of graduation, greater growth in accuracy as test scores are 
included. Second, we find that Random Forests does outperform the baseline model, with an 
average 5% increase in accuracy according to AUC. For graduation, this difference grows with 
additional test scores included in the model; including both third and eighth grade tests in the 
baseline probit model increases the AUC by .01, whereas including the same tests in the Random 
Forests model increases the AUC by .03. We believe these differences are primarily driven by 
nonlinearities, and due to the more complex models sacrificing interpretability, use them as our 
primary specification.  

6. Conclusion 

 A large literature shows that early academic performance, measured primarily by test 
scores, is predictive of later academic success, and that there are significant gaps in student 
achievement by student disadvantaged status. Our findings reaffirm these findings. Indeed, 
across three states we find consistent and very strong relationships between 3rd grade test scores 
and high school tests, advanced course-taking, and graduation. For instance, all else equal, a 
student at the 10th versus the 90th percentile of the 3rd grade math test distribution is expected to 
be 38-42 (depending on state) percentile points lower in the high school math test distribution, is 
expected to be 35-41% less likely to take an advanced course in high school, and 12-14% less 
likely to graduate. We conclude that early student struggles on state tests are a credible warning 
signal for schools and systems that make the case for additional academic support in the near 
term, as opposed to assuming that additional years of instruction are likely to change a student’s 
trajectory. Educators and families should take 3rd grade test results seriously and respond 
accordingly; while they may not be determinative, they provide a strong indication of the path a 
student is on. 
 
 Consistent with a small body of evidence (e.g., Zau and Betts, 2008), we find limited 
differences in the predictive power of 8th grade over 3rd grade tests, suggesting that there is little 
change in the trajectory of student achievement after the 3rd grade. Specifically, information 
about 8th grade test achievement does add statistically significant explanatory power to models 
predicting high school outcomes, yet the additional information does not change predictions 
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markedly. For instance, the correlation in graduation, advanced course-taking, and high school 
math predictions between models using 3rd grade test scores and models using 8th grade test 
scores are .86, .94, and .82 respectively.   
 
 Our results illustrate the troubling degree to which long term success is associated with a 
student’s demographic characteristics, regardless of the student’s early academic prowess.  
Controlling for 3rd grade test achievement, poverty and race/ethnicity are strongly predictive of 
students’ high school outcomes. Students who are EDS in the 3rd grade and in the 10th decile of 
the 3rdgrade achievement distribution score in high school math at the level of non-EDS students 
in the 9thdecile, are only about as likely to take an advanced math or science course in high 
school as non-EDS students in the 9th decile, and only about as likely to graduate as non-EDS 
students in the 2nd decile. In short, our models estimate the substantial magnitude of the 
academic headwinds that low-income students face over time.   
 

We are careful not to imply that our findings are necessarily related directly or solely to 
students’ experiences in schools themselves as there are disagreements about the degree to which 
schools ameliorate achievement gaps in different grades.57 However, the combination of large 
achievement gaps in 3rd grade and the relationship between 3rd grade performance and long-term 
performance reinforces the challenge of reducing inequities in college readiness. Students in 
subgroups most likely to lag behind peers in 3rd grade tend to fall further behind over time rather 
than catching up. 

 
It is certainly a judgment call as to whether the models we described here are highly 

accurate in predicting long term student outcomes, but there does appear to be broad agreement 
that tests ought to be used to diagnose when students are projected to struggle in their academic 
careers (NCLD, 2017; Richards et al., 2007). One might view schooling or other social service 
interventions as successful if they decrease the predictive power of 3rd grade tests, as this would 
imply that interventions are ensuring that early achievement does not become academic destiny. 
This suggests the need for more research along the lines of Austin et al. (2020) and Jang and 
Reardon (2019) that explore how students’ educational trajectories may vary across different 
contexts, and, more importantly, why they may vary. 

 
More novel is our exploration of using segments of achievement and parameters 

estimated from different states to predict high school outcomes. We find evidence that both using 
parameters generated from using segments of students’ academic careers as well as using out-of-
state generated parameters results in quite accurate estimates of students’ high school outcomes. 
For instance, in the case of using segments, the correlation between .82-.99. And, while the 
accuracy of the estimates varies depending on the state pairings, the correlations between the 
estimates generated using own-state students to derive parameters and those generated using 
parameters derived from out-of-state students are also quite high: .78-.99 depending on state and 
outcome.  These findings suggest that predictive modeling can be carried out successfully for 
more students, even in settings that lack the long panels of longitudinal data included in our 
analysis. 

 
57 See, for instance, recent evidence about the distribution of resources in schools across student subgroups (e.g., 
Goldhaber et al., 2018; Bischoff & Owens, 2019; Ijun Lai, 2020) and summer fall back and what it implies about 
differential student learning while students are in school (von Hipple et al., 2018). 
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 The findings on different ways to make achievement projections have important 
implications for policy and practice. Of particular note is the use of these type of predictive 
models for state or district early warning systems, i.e., systems to highlight students who early on 
are in danger of not succeeding in high school. Our findings suggest that such systems likely 
need to target students for interventions far earlier than 8th grade as there is little that generally 
disrupts the trajectory that students are on when they are tested in the 3rd grade. But they also 
show that states that do not have data systems allowing them to estimate long-term educational 
outcomes (3rd grade to the end of high school) have good alternative options for generating 
predictions. 
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Tables and Figures 
Table 1: Selected Descriptive Statistics on Analytic Sample. 
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Table 2: Model Coefficients. 

 
 
Table 3: Model Coefficients by State (3rd grade). 
 

MA NC WA MA NC WA MA NC WA
(1) (2) (3) (4) (5) (6) (7) (8) (9)

0.479*** 0.482*** 0.540*** 0.4972*** 0.446*** 0.449*** 0.096*** 0.191*** 0.131***
(0.002) (0.002) (0.004) (0.005) (0.002) (0.005) (0.004) (0.002) (0.004)
0.182 0.162*** 0.172*** 0.178*** 0.222*** 0.208*** 0.055*** 0.115*** 0.105***

(0.002) (0.002) (0.004) (0.006) (0.002) (0.005) (0.004) (0.002) (0.004)

R2 or psuedo-R2 0.533 0.451 0.578 0.150 0.238 0.149 0.138 0.131 0.098
N 233,236 467,249 55,266 165,743 735,241 209,009 166,023 742,063 210,129

Note :  While not reported, all models also include controls for students's gender, race/ethnicity, a Limited English Proficiency 
flag, an economically disadvantaged flag, and participation in Special Education services. All models include year indicators 
interacted with 3rd grade trest scores. Marginal effects are reported in table 4. Standard deviations in parentheses.

3rd Grade Reading 
Percentile

High School Math Tests Advanced Course-Taking Graduation

3rd Grade Math 
Percentile 
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Table 4: Correlations of Predicted High School Math Percentile by Grade and State. 

  Overall MA NC WA 

  3rd 8th 3rd & 8th 3rd 8th 3rd & 8th 3rd 8th 3rd & 8th 3rd 8th 3rd & 8th 

O
ve

ra
ll 3rd 1            

8th  0.7925 1           

3rd & 8th 0.8462 
0.993

6 1          

M
A

 3rd  0.9974 
0.791

8 0.8439 1         

8th  0.7941 
0.998

8 0.9928 0.7954 1        

3rd & 8th  0.8473 
0.992

9 0.999 0.8472 
0.993

9 1       

N
C

 

3rd  0.9974 
0.789

2 0.8443 0.9938 
0.789

8 0.8448 1      

8th  0.7902 
0.999

2 0.9932 0.7884 
0.997

7 0.9918 0.7889 1     

3rd & 8th  0.8438 
0.992

8 0.9994 0.8405 
0.991

4 0.9979 0.8441 
0.993

6 1    

W
A

 3rd  0.9962 
0.790

1 0.843 0.9958 0.794 0.8462 0.9938 
0.787

3 0.8405 1   

8th  0.7967 
0.998

6 0.9926 0.7973 
0.999

4 0.9933 0.7924 
0.997

6 0.9913 0.7977 1  

3rd & 8th  0.8509 
0.992

5 0.9986 0.8503 
0.993

4 0.9994 0.8485 
0.991

7 0.9977 0.8512 0.9939 1 
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Table 5: Correlations between Model Predictions by State. 

  MA data NC data WA data 

  
MA  

model 
NC  

model 
WA  

model 
MA  

model 
NC  

model 
WA  

model 
MA  

model 
NC  

model 
WA  

model 

G
ra

du
at

i
on

 MA model 1    1   1    
NC model 0.849 1   0.929 1  0.862 1   

WA model 0.938 0.891 1 0.958 0.835 1 0.915 0.892 1 

A
dv

an
ce

d 
co

ur
se

-  MA model 1     1     1     
NC model 0.870 1   0.954 1  0.893 1   

WA model 0.971 0.857 1 0.939 0.936 1 0.966 0.887 1 

H
S 

m
at

h MA model 1    1   1    
NC model 0.993 1   0.995 1  0.992 1   
WA model 0.995 0.993 1 0.997 0.995 1 0.993 0.991 1 
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Figure 1: Average Percent Student Sample Attrition by Grade and State, 2006-2018. 

 
Note: Average percent of observable 3rd grade students throughout the K-12 education system, 
broken up by state. Most student’s observable in eighth grade have the Above 50 outcome, and 
those observable through 12th grade have the Graduation outcome. 
 
Figure 2: Probability of Graduation by 3rd grade Test Score Decile and EDS. 

 
Note: Probability of graduation by 3rd grade test score decile and EDS, estimated as marginal 
effects. Consistent, large effects of EDS status are seen, lowering probability of graduation by 
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eight percent to 10% across all test scores for math and reading—approximately the same effect 
as going from the first to tenth decile of scores. 
 
Figure 3: Probability of Advanced Course-Taking by 3rd grade Test Score Decile and EDS. 

 
Note: Probability of advanced course-taking by 3rd grade test score decile and EDS, estimated as 
marginal effects. Relatively consistent, large effects of EDS status are seen, lowering probability 
of advanced course-taking by eight percent to 10% across all test scores for math and reading—
approximately the same effect as improving test scores by one decile.  
 
Figure 4: High School Math Percentile by 3rd grade Test Scores and EDS. 

 
Note: High school math percentile by 3rd grade test score decile and EDS, estimated as marginal 
effects. Relatively consistent, large effects of EDS status are seen, lowering high school math 
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percentile by three percent to five percent across all test scores for math and reading—a slightly 
smaller effect as improving test scores by one decile 
 
Figure 5: ROC Curve Predicting Graduation using Third and Eighth Grade Test Scores. 

 
Note: ROC curves corresponding to graduation prediction using both 3rd grade test scores and eighth grade test 
scores, with reported AUCs in the legend. The similarity of AUC and general shape of ROC curve shows a strong 
capacity for effective intervention targeting early in students’ academic careers—as early as 3rd grade. 

 

Figure 6: ROC Curve Predicting Advanced Course-Taking using Third and Eight Grade Test. 
Scores 

 

Note: ROC curves corresponding to advanced course-taking prediction using both 3rd grade test 
scores and eighth grade test scores, with reported AUCs in the legend. The similarity of AUC 
and general shape of ROC curve shows a strong capacity for predicting high achievement as 
early as 3rd grade.
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Figure 7: Graduation Cross-Validated AUC Estimates by Prediction Model. 

 
Note: Mean estimated probabilities of 10-fold cross-validated AUC for graduation. Confidence 
intervals are generated by repeating 10-fold CV over 100 iterations. 
 
Figure 8: Advanced Course-Taking Cross-Validated AUC Estimates by Prediction Model. 

 
Note: Mean estimated probabilities of 10-fold cross-validated AUC for advanced course-taking. 
Confidence intervals are generated by repeating 10-fold CV over 100 iterations.
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Figure 9: High School Math Percentile Cross-Validated RMSE Estimates by Prediction Model. 

 
Note: Mean estimates of 10-fold cross-validated RMSE for high school math tests. Confidence 
intervals are generated by repeating 10-fold CV over 100 iterations. 
 
 
 
Figure 10: Scatterplot of Predicted Probabilities of Graduation in WA vs Predicted Probabilities 

from Out-of-State Models (3rd grade). 
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Note: Scatterplot of predicted probabilities of graduation in Washington compared to predicted 
probabilities in North Carolina and Massachusetts, estimated on students in Washington State. 
Points displayed are a random subset of less than five percent of the data, where the probability 
of displaying a point is inversely proportional to the predicted probability of graduation for 
readability. 
Figure 11:  Scatterplot of Predicted Probabilities of Graduation in MA vs Predicted Probabilities 

from Out-of-State Models (3rd grade). 

Note: Scatterplot of predicted probabilities of graduation in Massachusetts compared to predicted 
probabilities in North Carolina and Washington, estimated on students in Massachusetts. Points 
displayed are a random subset of less than five percent of the data, where the probability of 
displaying a point is inversely proportional to the predicted probability of graduation for 
readability. 
 
Figure 12: Scatterplot of Predicted Probabilities of Graduation in NC vs Predicted Probabilities 
from Out-of-State Models (3rd grade). 
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Note:  Scatterplot of predicted probabilities of graduation in North Carolina compared to 
predicted probabilities in Massachusetts and Washington, estimated on students in North 
Carolina. Points displayed are a random subset of less than five percent of the data, where the 
probability of displaying a point is inversely proportional to the predicted probability of 
graduation for readability. 
 
 
Figure 13: Scatterplot of Predicted Probabilities of Advanced Course-Taking in WA vs 
Predicted Probabilities from Out-of-State Models (3rd grade). 

 
Note: Scatterplot of predicted probabilities of advanced course-taking in Washington compared 
to predicted probabilities in Massachusetts and North Carolina, estimated on students in 
Washington. Points displayed are a random subset of less than five percent of the data, where the 
probability of displaying a point is inversely proportional to the predicted probability of 
advanced course-taking for readability. 
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Figure 14: Scatterplot of Predicted Probabilities of Advanced Course-Taking in MA vs 
Predicted Probabilities from Out-of-State Models (3rd grade). 

 
Note: Scatterplot of predicted probabilities of advanced course-taking in Massachusetts 
compared to predicted probabilities in Washington and North Carolina, estimated on students in 
Massachusetts. Points displayed are a random subset of less than five percent of the data, where 
the probability of displaying a point is inversely proportional to the predicted probability of 
advanced course-taking for readability.  
 
Figure 15: Scatterplot of Predicted Probabilities of Advanced Course-Taking in NC vs Predicted 
Probabilities from Out-of-State Models (3rd grade). 

 
Note: Scatterplot of predicted probabilities of advanced course-taking in North Carolina 
compared to predicted probabilities in Washington and Massachusetts, estimated on students in 
North Carolina. Points displayed are a random subset of less than five percent of the data, where 
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the probability of displaying a point is inversely proportional to the predicted probability of 
advanced course-taking for readability. 
 
Figure 16: Scatterplot of Predicted High School Math Percentile in WA vs Predicted 
Probabilities from Out-of-State Models (3rd grade). 

 
Note: Scatterplot of predicted percentiles of high school math test in Washington compared to 
predicted probabilities in North Carolina and Massachusetts, estimated on students in 
Washington. Points displayed are a random subset of less than five percent of the data. 
 
Figure 17: Scatterplot of Predicted High School Math Percentile in MA vs Predicted 
Probabilities from Out-of-State Models (3rd grade). 
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Note: Scatterplot of predicted percentiles of high school math test in Massachusetts compared to 
predicted probabilities in North Carolina and Washington, estimated on students in 
Massachusetts. Points displayed are a random subset of less than five percent of the data. 
 
 
Figure 18: Scatterplot of Predicted High School Math Percentile in NC vs Predicted 
Probabilities from Out-of-State Models (3rd grade). 
 

 
Note: Scatterplot of predicted percentiles of high school math test in North Carolina compared to 
predicted probabilities in Massachusetts and Washington, estimated on students in North 
Carolina. Points displayed are a random subset of less than five percent of the data.
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Appendix A 

A.1 The Effect of Nonlinear Classifiers on Predictive Capacity 

We use three ML approaches for predicting high school outcomes: Kernel Support Vector Machines, 
Random Forest Classification, and Gradient Boosted Decision Trees. We describe how we use these three 
approaches in estimating the schooling outcomes below. Without loss of generality, we describe the method in 
terms of students’ graduation as the outcome. 

Support Vector Machines 
Given N students (𝑿𝑿𝑖𝑖 ,𝑌𝑌𝑖𝑖)𝑖𝑖∈1,..,𝑛𝑛 where 𝑌𝑌𝑖𝑖 ∈ {−1, 1} represents is a dichotomization of graduation, 

Support Vector Machines (SVMs) estimate a hyperplane which maximizes the distance between graduate and 
non-graduate students according to their observable characteristics. This can be written as two parallel 
hyperplanes 

 
      𝑋𝑋𝛽𝛽 − 𝛽𝛽0 ≥   1,        𝑌𝑌𝑖𝑖 =     1                   (A1a) 

    𝑋𝑋𝛽𝛽 − 𝛽𝛽0 ≤ −1,                𝑌𝑌𝑖𝑖 =  −1                (A1b) 
 
Since the distance between these two hyperplanes is 2

||𝛽𝛽||
, maximizing the distance between is equivalent to 

minimizing ||𝛽𝛽||. This is equivalent to solving the optimization problem 
 

 
min�|𝛽𝛽|�     𝑠𝑠. 𝑡𝑡.   𝑌𝑌𝑖𝑖(𝑋𝑋𝑖𝑖𝛽𝛽 + 𝛽𝛽0) ≥ 1,  for all 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁. (A2) 

 
The optimal values for 𝛽𝛽 and 𝛽𝛽0 are completely determined by students with the closest characteristics 𝑋𝑋𝑖𝑖 that 
end up with different graduation outcomes. In other words, the resulting boundary between graduation and 
non-graduation is completely determined by students with observable characteristic values most ambiguously 
related to their graduation.  
 
While we omit the details here, this procedure can be generalized to non-linearly separable data using “kernel 
functions” by describing more general distances between points (e.g., Roman et al., 2020). Since kernel 
support vector machines are based entirely on the distance between student characteristics, and not the 
characteristics themselves, they tend to handle high dimensional data very well. Moreover, because of their 
low-dimensional parameterization, kernel support vector machines avoid overfitting more than other methods. 
However, these models do have some drawbacks. They mainly perform well when there is clear separation 
between graduates and non-graduates according to student observables, and their accuracy depends largely on 
the arbitrary choice of an appropriate kernel, model estimation has a computational complexity that’s cubic in 
the number of students 𝑁𝑁, and they do not produce any interpretable probabilities of membership. 
 
Classification and Regression Trees, Random Forests, and Gradient Boosting 

Classification and Regression Tree methods operate by iteratively splitting students along a single 
dimension of their observable characteristics according to what best separates graduates from non-graduates. 
This iterative splitting results in each student falling into a “bin” based on their observable characteristics, with 
the end goal that the majority of students in the same bin having the same graduation outcome. In the context 
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of binary outcomes, such as graduation, the agreement associated with a tree can be measured with “Gini 
Impurity”, a weighted average of picking the wrong class:  

 
           𝐼𝐼𝐺𝐺(𝑃𝑃) =  2𝑝𝑝(1 − 𝑝𝑝)                 (A3) 

 
for 𝑝𝑝 = 𝑃𝑃(Graduation). The Gini Impurity tends to zero as the grouped data is better described by a single 
outcome and is maximized when outcomes are uniformly distributed among data in the group (𝑝𝑝 →  1/2). 
Hence, this will be minimized when the majority of students in each “bin” are either graduates or non-
graduates.  

To make this idea concrete, we first introduce the KL-Divergence of two probability distributions 𝑃𝑃 and 
𝑄𝑄 for a binary outcome: 

 
              𝐾𝐾𝐿𝐿(𝑃𝑃 ||𝑄𝑄) =  𝑝𝑝 log �𝑝𝑝

𝑞𝑞
� + (1 − 𝑝𝑝) log �1−𝑝𝑝

1−𝑞𝑞
�,                        (A4) 

 
a non-negative measure of agreement which is 0 if and only if 𝑃𝑃 = 𝑄𝑄 almost everywhere. The Gini impurity 
can be minimized by minimizing the negative KL-divergence between 𝑃𝑃 and 1

2
, which is equal to minimizing 

 
𝐻𝐻(𝑌𝑌): = −𝐾𝐾𝐿𝐿(𝑃𝑃|| 1

2
) =  − 𝑝𝑝 log(𝑝𝑝) − (1 − 𝑝𝑝) log (1 − 𝑝𝑝),              (A5) 

 
known in the literature as the entropy of the graduation outcome 𝑌𝑌 with distribution 𝑃𝑃. Finally, we define the 
expected “information gain” conditioned on student characteristics 𝑋𝑋 as 
 

𝐸𝐸𝑋𝑋[𝐼𝐼𝐼𝐼(𝑌𝑌,𝑋𝑋)] = 𝐸𝐸𝑋𝑋[𝐻𝐻(𝑌𝑌) − 𝐻𝐻(𝑌𝑌|𝑋𝑋)] = 𝐻𝐻(𝑌𝑌) − 𝐸𝐸𝑋𝑋[𝐻𝐻(𝑌𝑌|𝑋𝑋)],  (A6) 
 
where 𝐻𝐻(𝑌𝑌|𝑋𝑋) is the entropy of the student graduation outcome 𝑌𝑌 using conditional probabilities of the form 
𝑃𝑃(Graduated || 𝑋𝑋). A Classification and Regression Tree for student graduation would then be optimized by 
constructing a model for 𝑃𝑃(Graduated || 𝑋𝑋) that iteratively finds variable and cut-point pairs which maximize 
the expected information gain in equation (C4). 
 

As might be obvious, the solution to iterative optimization of (C4) can lead to overfitting. For example, if 
the data are continuous, one could construct a tree so specific as to classify each student separately. A 
technique called Bootstrap Aggregating (bagging) attempts to alleviate this issue by selecting a random sample 
with replacement of the training set and fits trees to the samples. Specifically, for some number of bootstrap 
repetitions 𝐵𝐵: 
 

For 𝑏𝑏 = 1, … ,𝐵𝐵: 
1. Sample, with replacement, 𝑁𝑁 students 
2. Train classification or regression tree 𝑓𝑓𝑏𝑏(𝑿𝑿,𝑌𝑌) on the subsampled students 

 
Predictions are then made by averaging over each of the estimates 𝑓𝑓𝑏𝑏� . For an out of sample student 𝑖𝑖 with 
characteristics 𝑋𝑋𝑖𝑖 , the prediction is taken to be the median value of {𝑓𝑓𝑏𝑏� (𝒙𝒙′), 𝑏𝑏 ∈ 𝐵𝐵}. Though a single estimated 
classification tree can be highly sensitive to training data, the aggregation of many such models is not as long 
as the models are sufficiently uncorrelated. This “Bagging” procedure helps to both decorrelate these models 
and reduce overfitting issues. To further reduce the correlation across predictions 𝑓𝑓𝑏𝑏� , a technique called 
“Random Forests” conduct bootstrap aggregating of classification trees with each sample of students (𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖)𝑖𝑖∈𝑏𝑏 
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only containing a random subset of their characteristics 𝑋𝑋 (typically �𝑝𝑝 for 𝑋𝑋 ∈ ℝ𝑝𝑝). The reduction in 
overfitting allows “Random Forest” methods to retain high prediction accuracy of classification trees out-of-
sample by alleviating overfitting. 
 
 An alternative method for boosting classification tree accuracy is called Gradient Boosting. At the 𝑚𝑚𝑡𝑡ℎ 
step, gradient boosting methods fit a classification tree 𝑓𝑓𝑚𝑚(𝒙𝒙) by improving the information gain (C4) based on 
residuals from the classification 𝑓𝑓𝑚𝑚−1(𝒙𝒙). This update has the form 
 

𝑓𝑓𝑚𝑚(𝑋𝑋) = 𝑓𝑓𝑚𝑚−1(𝑋𝑋) + 𝜈𝜈 𝑓𝑓𝑚𝑚′(𝑋𝑋),    (A7) 
 

where 𝑓𝑓𝑚𝑚′ (𝑋𝑋) is an “adjustment” model based on the residuals between the true graduation outcome 𝑌𝑌 and the 
estimated graduation outcome from 𝑓𝑓𝑚𝑚−1(𝑋𝑋), and 𝜈𝜈 < 0.1 is a “learning rate” parameter to reduce overfitting. 
 
 
Table A1: AUCs by Prediction Model 
  Graduation Advanced Course-Taking 
Model (1) (2) (3) (4) (5) (6) 
Probit 0.75 0.76 0.76 0.77 0.80 0.82 
Interaction 0.76 0.78 0.79 0.80 0.83 0.83 
SVM 0.74 0.76 0.75 0.82 0.84 0.85 
Random Forest 0.81 0.83 0.84 0.83 0.85 0.87 
Gradient Boost 0.79 0.82 0.83 0.83 0.85 0.87 
3rd Grade Tests X  X X  X 
8th Grade Tests  X X  X X 
N 1,120,023 1,120,023 1,120,023 1,110,873 1,110,873 1,110,873 

Notes: AUC Measures for Graduation and Advanced Course-Taking for various prediction models 
for all three states. State and year effects are omitted for the purpose of valid out-of-sample prediction. 
 
 
A.3 The Confounding Effects of Schoolyear  
 

As students’ academic environment change over time, the relationship between their observable 
characteristics out outcomes may also change, and any prediction model will be unable to capture non-linear 
time trends. Due to the long panel of data in North Carolina, ranging from 1998 to 2012 for 3rd graders able to 
be identified as advanced course-takers or high school graduates,58 we can explore potential changes in the 
magnitude of the relationship between students’ early academic testing distribution and high school outcomes 
over a long period. We model the relationship between 3rd grade test scores and dichotomous high school high 
school outcomes for students in the initial cohorts of the sample (1998-2003) and the final cohorts of the 
sample (2008-2012) using equation (2) and compare the coefficients. Then, we estimate equation (2) on a 
random subset of the early cohorts (1998-2003) and use the model to predict on out-of-sample students in the 
early cohorts as well as future cohorts (2008-2012). 
 

 
58 Due to the only recently available high school test score data in North Carolina, we omit this outcome from the robustness check.   
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Table A1 shows coefficients estimating the relationship between math and reading 3rd grade test score 
percentile and dichotomous high school outcomes. While statistically significant, we find that the magnitude of 
the relationship between math percentile score and probability of high school outcome stays relatively 
consistent over time. However, the relationship between 3rd grade reading score in early and future cohorts in 
North Carolina does change substantively.  

 
Table A2: Math and Reading Percentile Coefficients by Year Range 

 
Notes: All regressions control for student observables. Standard deviations in parentheses. 

∗∗∗  𝑝𝑝 <  0.01 ∗∗  𝑝𝑝 <  0.05 ∗  𝑝𝑝 <  0.10 
 

When predicting future cohorts’ outcomes using coefficients estimated from early cohorts, we find that 
there is very little decrease in overall prediction accuracy. The AUC of predictive future cohort graduation with 
within-year range student data is .764 compared to an AUC of .726 when using early cohort relationships with 
graduation. Similarly, the AUC of within-year range student data for advanced course-taking is .795, compared 
to an AUC of .829 when using early cohort relationships with advanced course-taking. This suggests the 
relationships hold for multiple years. 
 
 
 

(1) (2) (3) (4)
‘98-‘03 ‘08-‘12 ‘98-‘03 ‘08-‘12

1.59*** 1.86*** 1.01*** 0.96***

(0.01) (0.03) (0.01) (0.04)

0.84*** 1.14*** 0.75*** 0.33***

(0.01) (0.03) (0.01) (0.04)
Student Controls X X X X
N 447,614 87,034 408,149 76,455

Advanced Course-Taking Graduation

3rd Grade Math

3rd Grade Reading
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A.4 The Effect of Additional Grade-Specific Test Scores on Predictive Capacity 
 
Table A3: Predictive Accuracy Measures by Test Score Combination 

 
  (1) (2) (3) 
  HS Math Tests Advanced Course-Taking Graduation 
Grade RMSE AUC 
3rd 20.2 0.77 0.74 
4th 19.5 0.78 0.74 
5th 18.8 0.79 0.75 
3rd & 4th 19.1 0.78 0.75 
3rd & 5th 18.5 0.79 0.75 
4th & 5th 18.4 0.79 0.75 
3rd, 4th & 5th 18.3 0.79 0.75 
N 728,014 1,075,108 1,082,708 
Notes: Root mean squared error and AUC measures by test score combination. State and 
year effects are omitted for the purpose of valid out-of-sample prediction. 
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A.5 Sample Persistence  
 
Figure A1: Marginal Effects of Test Score on Sample Persistence by 8th Grade 
 

 
Notes: Marginal probabilities of sample persistence by 8th grade, controlling for student effects, broken up by test score decile. 
Students in the lowest decile of test scores are significantly less likely to persist in the sample through 8th grade, and students in 
the highest decile of test scores are somewhat less likely to persist in the sample through 8th grade. 

 

Figure A2: Marginal Effects of Test Score on Sample Persistence by 8th Grade (MA) 

 

 
Notes: Marginal probabilities of sample persistence by 8th grade in MA, controlling for student effects, broken up by 
test score decile. Students in the lowest and highest decile of test scores are significantly less likely to persist in the 
sample through 8th grade. 
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Figure A3: Marginal Effects of Test Score on Sample Persistence by 8th Grade (NC) 
 

 
Notes: Marginal probabilities of sample persistence by 8th grade in NC, controlling for student effects, broken up by 
test score decile. Students in the lowest decile of test scores are significantly less likely to persist in the sample 
through 8th grade. 

 
Figure A4: Marginal Effects of Test Score on Sample Persistence by 8th Grade (WA) 

 

 
Notes: Marginal probabilities of sample persistence by 8th grade in WA, controlling for student effects, broken up by 
test score decile. Probability of sample persistence is relatively consistent across test score decile. 
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A.6 Supplementary Outcome Results 
Figure A4: 8th Grade Math Percentile by 3rd Grade Test Scores and EDS 
 

 
Notes: 8th grade math percentile by 3rd grade test score decile and EDS, estimated as marginal effects. Large effects 
of EDS status are seen, lowering percentile by up to 10 for math and reading. 

 

Figure A5: Probability of Top 50th Percentile in 8th Grade Math by 3rd Grade Test Scores and  EDS 
 

Notes: Probability of top 50th percentile in 8th grade math by 3rd grade test score decile and EDS, estimated as 
marginal effects. Large effects of EDS status are seen, lowering probability of top-half achievement by up to 10% 
for math and reading—approximately the same effect as a one-decile change in math test score. 
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Figure A6: Probability of Top 50th Percentile in High School Math by 3rd Grade Test Scores  and EDS 
 
 

Notes: 8th grade math percentile by 3rd grade test score decile and EDS, estimated as marginal effects. Large effects 
of EDS status are seen, lowering percentile by up to 10 for math and reading. 

 
Figure A7: 8th Grade Math Percentile Cross-Validated RMSE Estimates by Prediction Model 
 

 

Notes: Mean estimates of 10-fold cross-validated RNSE for 8th grade math tests. Confidence intervals are generated 
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repeating 10-fold CV over 100 iterations.  
 
 
Figure A8: Probability of Top 50th Percentile in 8th Grade Math Cross-Validated AUC Estimated by 
Prediction Model 
 
 

 
Notes: Mean estimates of 10-fold cross-validated AUC for the probability of scoring in the top half of 8th grade math 
test scores. Confidence intervals are generated by repeating 10-fold CV over 100 iterations 
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Figure A9: Probability of Top 50th Percentile High School Math Cross-Validated AUC Estimated by 
Prediction Model 
 

 
Notes: Mean estimates of 10-fold cross-validated AUC for the probability of scoring in the top half of high school 
math test scores. Confidence intervals are generated by repeating 10-fold CV over 100 iterations. 

 
Figure A10: Scatterplot of Predicted 8th Grade Math Percentile in WA vs Predicted Probabilities from 
Out-of-State Models (3rd Grade) 
 

 
 

Notes: Scatterplot of predicted percentiles of 8th grade math test in Washington compared to predicted probabilities 
in North Carolina and Massachusetts, estimated on students in Washington. 
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Figure A11: Scatterplot of Predicted 8th Grade Math Percentile in MA vs Predicted Probabilities from 
Out-of-State Models (3rd Grade) 
 

 
Notes: Scatterplot of predicted percentiles of 8th grade math test in Massachusetts compared to predicted 
probabilities in North Carolina and Washington, estimated on students in Massachusetts. 

 
 
Figure A12: Scatterplot of Predicted 8th Grade Math Percentile in NC vs Predicted Probabilities from 
Out-of-State Models (3rd Grade) 
 

 
Notes: Scatterplot of predicted percentiles of 8th grade math test in North Carolina compared to predicted 
probabilities in Massachusetts and Washington, estimated on students in North Carolina. 
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Figure A13: Scatterplot of Predicted Probabilities of Top Half 8th Grade Math Tests in WA vs Predicted 
Probabilities from Out-of-State Models (3rd Grade) 
 

 
Notes: Scatterplot of predicted probability of scoring in the top half of 8th grade math tests in Washington compared 
to predicted probabilities in North Carolina and Massachusetts, estimated on students in Washington. 

 
 
 
Figure A14: Scatterplot of Predicted Probabilities of Top Half 8th Grade Math Tests in MA vs Predicted 
Probabilities from Out-of-State Models (3rd Grade) 
 

 
Notes: Scatterplot of predicted probability of scoring in the top half of 8th grade math tests in Massachusetts 
compared to predicted probabilities in North Carolina and Washington, estimated on students in Massachusetts. 



 58 

Figure A15: Scatterplot of Predicted Probabilities of Top Half 8th Grade Math Tests in NC vs Predicted 
Probabilities from Out-of-State Models (3rd Grade) 
 

 
Notes Scatterplot of predicted probability of scoring in the top half of 8th grade math tests in North Carolina 
compared to predicted probabilities in Massachusetts and Washington, estimated on students in North Carolina. 

 
Figure A16: Scatterplot of Predicted Probabilities of Top Half High School Math Tests in WA vs 
Predicted Probabilities from Out-of-State Models (3rd Grade) 
 

 
Notes: Scatterplot of predicted probability of scoring in the top half of high school math tests in Washington 
compared to predicted probabilities in North Carolina and Massachusetts, estimated on students in Washington. 
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Figure A17: Scatterplot of Predicted Probabilities of Top Half High School Math Tests in MA vs 
Predicted Probabilities from Out-of-State Models (3rd Grade) 
 

 
Notes: Scatterplot of predicted probability of scoring in the top half of high school math tests in Massachusetts 
compared to predicted probabilities in Washington and North Carolina, estimated on students in Massachusetts. 

 
Figure A18: Scatterplot of Predicted Probabilities of Top Half High School Math Tests in NC vs 
Predicted Probabilities from Out-of-State Models (3rd Grade) 
 

 
Notes: Scatterplot of predicted probability of scoring in the top half of high school math tests in North Carolina . 
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A.6 State-Specific Results 
Figure A19: ROC Curve of Graduation by Model Specification in Massachusetts 
 
 

 
 
 
Figure A20: ROC Curve of Graduation by Model Specification in Washington 
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Figure A21: ROC Curve of Graduation by Model Specification in North Carolina 
 
 

 
 
 
Figure A22: Probability of Graduation by 3rd Grade Test Score Decile and EDS in Washington 
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Figure A23: Probability of Graduation by 3rd Grade Test Score Decile and EDS in Massachusetts 

 

 
 
 
Figure A24: Probability of Graduation by 3rd Grade Test Score Decile and EDS in North   Carolina 
 



 63 

Figure A25: Probability of Advanced Course-Taking by 3rd Grade Test Score Decile and EDS in 
Washington 

 

 
 
Figure A26: Probability of Advanced Course-Taking by 3rd Grade Test Score Decile and EDS in 
Massachusetts 
 

 
 
 

 



 64 

Figure A27: Probability of Advanced Course-Taking by 3rd Grade Test Score Decile and EDS in  North 
Carolina 

 
 
 
 
 
Figure A28: High School Math Percentile by 3rd Grade Test Score Decile and EDS in Washington 
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Figure A29: High School Math Percentile by 3rd Grade Test Score Decile and EDS in Massachusetts 

 

 
 
Figure A30: High School Math Percentile by 3rd Grade Test Score Decile and EDS in North   Carolina 
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Figure A31: Probability of Top 50th Percentile in 8th Grade Math by 3rd Grade Test Scores and 
EDS in Washington 

 
 

Figure A32: 8th Grade Math Percentile by 3rd Grade Test Scores and EDS in Massachusetts 
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Appendix B 

Table B1: Model Coefficients for Additional Outcomes by State 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: All models are estimated using linear regression. Columns (1) display no imputation, columns (2) display 
standard imputation described in Section 5.3, and columns (3)-(6) display imputation with ad hoc adjustments to 
test score coefficients described in section 5.3. The regression sample includes students who have 3rd grade math 
and reading test scores and 3rd grade student characteristics. All regressions control year, student race, gender, 
ethnicity, disability status, English language learner status, economically disadvantaged status, and enrollment 
status in special education. 

* p<0.10 ** p<0.05 *** p<0.01. Probability values are from a two-sided t-test. 

Panel A: 8th Grade Testing Distribution  

Overall MA NC WA  
(A1) (A2) (A3) (A4) 

3rd Grade Math  
Percentile 0.535*** 0.494*** 0.558*** 0.508*** 

(0.000709) (0.00162) (0.000921) (0.00154) 
3rd Grade Reading 
Percentile 0.179*** 0.205*** 0.169*** 0.180*** 

(0.000722) (0.00166) (0.000933) (0.00158) 
N 2,014,604 382,772 1,213,361 418,471 
Panel B: Probability Top Half of the 8th Grade Testing Distribution 

 
Overall MA NC WA 

 (B1) (B2) (B3) (B4) 
3rd Grade Math 
Percentile 

0.617*** 0.558*** 0.643*** 0.603*** 
 (0.00120) (0.00284) (0.00155) (0.00261) 

3rd Grade Reading 
Percentile 

0.185*** 0.211*** 0.168*** 0.199*** 

 (0.00134) (0.00312) (0.00172) (0.00294) 
N 2,014,604 382,772 1,213,361 418,471 
Panel C: Probability Top Half of the High School Testing Distribution 

 
Overall MA NC WA 

 (C1) (C2) (C3) (C4) 
3rd Grade Math 
Percentile 

0.570*** 0.577*** 0.566*** 0.614*** 
 (0.00192) (0.00329) (0.00253) (0.00656) 

3rd Grade Reading 
Percentile 

0.168*** 0.192*** 0.163*** 0.175*** 

 (0.00211) (0.00363) (0.00276) (0.00741) 
N 824,324 285,396 480,682 58,246 

 



 68 

Table B2: Model Coefficients of 8th Grade Math Percentile by State and Imputation Value Panel A: 
Massachusetts 

Not Imputed Imputed +10% +25% -10% -25% 

(A1)  (A2)  (A3)  (A4) (A5) (A6) 

3rd Grade Math Percentile 
 
 

3rd Grade Reading Percentile 
 
 

R Squared 

N 

 
 
 
 
 

3rd Grade Math Percentile 
 
 

3rd Grade Reading Percentile 
 
 

R Squared 

N 

 
 
 
 
 
     3rd Grade Math Percentile 
 
 
     3rd Grade Reading Percentile 

  Panel B: North Carolina  
Not Imputed Imputed +10% +25% -10% -25% 

(B1)  (B2)  (B3)  (B4) (B5) (B6) 

 
 
 
 
 
 
 
 
 

  Panel C: Washington  
Not Imputed Imputed +10% +25% -10% -25% 

(C1)  (C2)  (C3)  (C4) (C5) (C6)

     R Squared  

     N 
 
Notes: All models are estimated using linear regression. Columns (1) display no imputation, columns (2) display 
standard imputation described in Section 5.3, and columns (3)-(6) display imputation with ad hoc adjustments to test 
score coefficients described in section 5.3. The regression sample includes students who have 3rd grade math and 
reading test scores and 3rd grade student characteristics. All regressions control year, student race, gender, ethnicity, 
disability status, English language learner status, economically disadvantaged status, and enrollment status in 
special education. 
* p<0.10 ** p<0.05 *** p<0.01. Probability values are from a two-sided t-test. 

0.503*** 0.513*** 0.514*** 0.516*** 0.511*** 0.509*** 

(0.002) (0.001) (0.001) (0.001) (0.001) (0.001) 

0.210*** 0.211*** 0.211*** 0.212*** 0.211*** 0.210*** 

(0.002) (0.001) (0.001) (0.001) (0.001) (0.001) 

0.550 0.584 0.585 0.587 0.582 0.578 

382,772 482,264 482,264 482,264 482,264 482,264 
 

0.563*** 0.572*** 0.574*** 0.576*** 0.570*** 0.565*** 

(0.009) (0.008) (0.008) (0.008) (0.008) (0.008) 

0.170*** 0.176*** 0.176*** 0.177*** 0.175*** 0.174*** 

(0.009) (0.008) (0.008) (0.008) (0.008) (0.008) 

0.580 0.619 0.621 0.623 0.616 0.611 

1,213,361 1,505,484 1,505,484 1,505,484 1,505,484 1,505,484 
 

0.510*** 0.518*** 0.519*** 0.521*** 0.517*** 0.514*** 

(0.002) (0.001) (0.001) (0.001) (0.001) (0.001) 

0.180*** 0.183*** 0.184*** 0.184*** 0.183*** 0.182*** 

(0.002) (0.001) (0.001) (0.001) (0.001) (0.001) 

0.543 0.561 0.562 0.564 0.559 0.555 

418,471 493,228 493,228 493,228 493,228 493,228 
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Table B3: Model Coefficients by State with Imputation for High School Math Percentile (3rd Grade) 
 
 
 
 
 

3rd Grade Math Percentile 
 
 

3rd Grade Reading Percentile 
 
 

R Squared 

N 

 
 
 
 
 

3rd Grade Math Percentile 
 
 

3rd Grade Reading Percentile 
 
 

R Squared 

N 

 
 
 
 
 

3rd Grade Math Percentile 
 
 

3rd Grade Reading Percentile 

  Panel A: Massachusetts  
Non Imputed Imputed +10% +25% -10% -25% 

(A1)  (A2)  (A3)  (A4) (A5) (A6) 

 
 
 
 
 
 
 
 
 

  Panel B: North Carolina  
Non Imputed Imputed +10% +25% -10% -25% 

(B1)  (B2)  (B3)  (B4) (B5) (B6) 

 
 
 
 
 
 
 
 
 

  Panel C: Washington  
Non Imputed Imputed +10% +25% -10% -25% 

(C1)  (C2)  (C3)  (C4) (C5) (C6)

     R Squared 

                                                                      N 
 
Notes: All models are estimated using linear regression. Columns (1) display no imputation, columns (2) display 
standard imputation described in Section 5.3, and columns (3)-(6) display imputation with ad hoc adjustments to test 
score coefficients described in section 5.3. The regression sample includes students who have 3rd grade math and 
reading test scores and 3rd grade student characteristics. All regressions control year, student race, gender, ethnicity, 
disability status, English language learner status, economically disadvantaged status, and enrollment status in 
special education. 
* p<0.10 ** p<0.05 *** p<0.01. Probability values are from a two-sided t-test. 

0.500*** 0.498*** 0.499*** 0.500*** 0.497*** 0.494*** 

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

0.184*** 0.189*** 0.189*** 0.189*** 0.189*** 0.188*** 

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

0.536 0.567 0.569 0.571 0.566 0.562 

285,396 344,462 344,462 344,462 344,462 344,462 
 

0.487*** 0.467*** 0.474*** 0.482*** 0.459*** 0.442*** 

(0.002) (0.001) (0.001) (0.001) (0.001) (0.002) 

0.165*** 0.167*** 0.168*** 0.170*** 0.165*** 0.161*** 

(0.002) (0.001) (0.001) (0.001) (0.001) (0.002) 

0.450 0.441 0.452 0.466 0.427 0.398 

480,682 637,017 637,017 637,017 637,017 637,017 
 

0.539*** 0.533*** 0.533*** 0.533*** 0.533*** 0.533*** 

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

0.168*** 0.166*** 0.166*** 0.166*** 0.166*** 0.166*** 

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

0.579 0.579 0.579 0.579 0.579 0.579 

58,246 58,246 58,246 58,246 58,246 58,246 
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Table B4: Model Coefficients by State with Imputation for Advanced Course-Taking (3rd Grade) 

  Panel A: Massachusetts  
Non Imputed Imputed +10% +25% -10% -25% 

(A1)  (A2)  (A3)  (A4) (A5) (A6) 

3rd Grade Math Percentile 
 
 

3rd Grade Reading Percentile 
 
 

R Squared 

N 

 
 
 
 
 

3rd Grade Math Percentile 
 
 

3rd Grade Reading Percentile 
 
 

R Squared 

N 

 
 
 
 
 

3rd Grade Math Percentile 
 
 

3rd Grade Reading Percentile 

  Panel B: North Carolina  
Non Imputed Imputed +10% +25% -10% -25% 

(B1)  (B2)  (B3)  (B4) (B5) (B6) 

 
 
 
 
 
 
 
 
 

  Panel C: Washington  
Non Imputed Imputed +10% +25% -10% -25% 

(C1)  (C2)  (C3)  (C4) (C5) (C6)

R Squared 

N 
Notes: All models are estimated using linear regression. Columns (1) display no imputation, columns (2) display 
standard imputation described in Section 5.3, and columns (3)-(6) display imputation with ad hoc adjustments to test 
score coefficients described in section 5.3. The regression sample includes students who have 3rd grade math and 
reading test scores and 3rd grade student characteristics. All regressions control year, student race, gender, ethnicity, 
disability status, English language learner status, economically disadvantaged status, and enrollment status in 
special education. 
* p<0.10 ** p<0.05 *** p<0.01. Probability values are from a two-sided t-test. 

 

 

0.528*** 0.528*** 0.528*** 0.528*** 0.528*** 0.528*** 

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) 

0.188*** 0.187*** 0.187*** 0.187*** 0.187*** 0.187*** 

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) 

0.190 0.190 0.191 0.191 0.191 0.191 

172,243 172,651 172,651 172,651 172,651 172,651 
 

0.478*** 0.470*** 0.478*** 0.478*** 0.479*** 0.479*** 

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

0.260*** 0.253*** 0.263*** 0.262*** 0.264*** 0.265*** 

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

0.211 0.208 0.216 0.215 0.216 0.216 

773,644 787,543 787,543 787,543 787,543 787,543 
 

0.467*** 0.464*** 0.467*** 0.467*** 0.467*** 0.466*** 

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) 

0.205*** 0.204*** 0.206*** 0.206*** 0.206*** 0.205*** 

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) 

0.176 0.175 0.178 0.178 0.178 0.177 

242,333 244,964 244,964 244,964 244,964 244,964 
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Table B5: Model Coefficients by State with Imputation for Graduation (3rd Grade) 

  Panel A: Massachusetts  
Non Imputed Imputed +10% +25% -10% -25% 

(A1)  (A2)  (A3)  (A4) (A5) (A6) 

3rd Grade Math Percentile 
 
 

3rd Grade Reading Percentile 
 
 

R Squared 

N 

 
 
 
 
 

3rd Grade Math Percentile 
 
 

3rd Grade Reading Percentile 
 
 

R Squared 

N 

 
 
 
 
 

3rd Grade Math Percentile 
 
 

3rd Grade Reading Percentile 
 
R Squared 
 
N 

  Panel B: North Carolina  
Non Imputed Imputed +10% +25% -10% -25% 

(B1)  (B2)  (B3)  (B4) (B5) (B6) 

 
 
 
 
 
 
 
 
 
  Panel C: Washington  

Not Imputed Imputed +10% +25% -10% -25% 

(C1)  (C2)  (C3)  (C4) (C5)

0.105*** 0.0846*** 0.102*** 0.102*** 0.101*** 0.0996*** 

(0.004) (0.003) (0.003) (0.003) (0.003) (0.003) 

0.054*** 0.046*** 0.052*** 0.053*** 0.051*** 0.050*** 

(0.004) (0.003) (0.003) (0.003) (0.003) (0.003) 

0.093 0.071 0.108 0.107 0.108 0.107 

172,651 207,520 207,520 207,520 207,520 207,520 
 

0.221*** 0.146*** 0.215*** 0.215*** 0.211*** 0.207*** 

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

0.100*** 0.106*** 0.141*** 0.142*** 0.136*** 0.132*** 

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

0.104 0.065 0.131 0.131 0.129 0.124 

786,564 1,069,956 1,069,956 1,069,956 1,069,956 1,069,956 
 

  0.139*** 0.114*** 0.001*** 0.001*** 0.001*** 0.001*** 

  (0.004) (0.003) (0.003) (0.003) (0.003) (0.003) 

  0.115*** 0.095*** 0.114*** 0.114*** 0.113*** 0.111*** 

  (0.004) (0.003) (0.003) (0.003) (0.003) (0.003) 

  0.083  0.063  0.092  0.092  0.092  0.092  
  

  244,964 278,690 278,690 278,690 278,690 278,690 
Notes: All models are estimated using linear regression. Columns (1) display no imputation, columns (2) display 
standard imputation described in Section 5.3, and columns (3)-(6) display imputation with ad hoc adjustments to 
test score coefficients described in section 5.3. The regression sample includes students who have 3rd grade math 
and reading test scores and 3rd grade student characteristics. All regressions control year, student race, gender, 
ethnicity, disability status, English language learner status, economically disadvantaged status, and enrollment 
status in special education. 
* p<0.10 ** p<0.05 *** p<0.01. Probability values are from a two-sided t-test. 
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