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Abstract 

We examine how pension rule changes affected teacher retirement by estimating an option-value 

retirement model on a large cohort of late career Missouri public school teachers from 1994 to 2008. In 

so doing we offer potential solutions to several statistical challenges that arise in estimating structural 

models of retirement on large panel data sets. The first concerns modeling the formation of teacher 

expectations of future pension rules. The second is bias induced by baseline sample selection: in baseline 

cohorts we only observe teachers who are still working. This bias also evolves with pension rule changes. A 

third challenge arises from maximum-likelihood estimation using large panels of micro-data on 

individual teachers. The teacher-level data can be difficult to obtain and the likelihood of teacher-data is 

costly to compute in large panels. We address these challenges by incorporating policy expectations and 

sample selection directly into estimation of the likelihood. We also show that the likelihood can be 

efficiently estimated by using teacher data grouped by age and experience cells, which permits:  a) 

estimating structural models of teacher retirement with data that are more widely available, and b) 

dramatic reductions in computation cost. Counter-factual simulations of the estimated structural model 

suggest that Missouri’s pension enhancements led to earlier retirement by about 0.4 years on average for the 

1994 cohort and by more than one year in a steady state. Enhancements increased steady state 

pension liabilities by 16 percent for senior teachers. 

Keywords: teachers’ pensions, sample selection bias, expectation of policy rules 

JEL codes: I21, J26, J38        



1 Introduction

 During the 1990s, pension benefits were enhanced for public K-12 teachers in many 

states. These enhancements caused a significant increase in pension liabilities (Koedel, et al. 

2014), yet analysis of the policy’s effects on the labor supply of late career teachers is limited. 

In this study, we examine the effect of pension rule enhancements using a large administrative 

panel data set for public school teachers in Missouri, who experienced pension enhancements 

almost every year from 1995 to 2002.

 This study is motivated by several policy concerns. First, teachers retire earlier than 

other comparable professionals (Harris and Adams 2007; Kim, et al., 2017), and retaining 

experienced teachers in high-need districts can have positive effects on student achievement 

(Rivkin et al., 2005). Since pension rules affect retirement decisions and the length of 

teaching careers they also affect school staffing and can exacerbate (or ameliorate) “teacher 

shortages.” (Costrell and McGee, 2010; Brown, 2013; Knapp, et al., 2016; Ni and Podgursky, 

2016).

 Second, unfunded pension liabilities have caused considerable fiscal stress for many 

state and local governments and have generated a growing literature highlighting the need for 

reform (Novy-Marx and Rauh, 2011; Malanga and McGee, 2018). As calls for pension 

reform intensify, there is an increasing need to develop behavioral models that can reliably 

predict retirement behavior in the presence of changes in pension rules. Because the pension 

enhancements occurred consecutively in a short time span of the 1990s in Missouri (and 

other states) and are expected to have long-lasting effects, commonly used regression-based 

tools for policy analysis (e.g., regression discontinuity or difference-in-differences) are not 

well suited for estimating their effects and, importantly, are not useful for estimating the 

retirement effects of pension reforms not yet implemented.

 A structural model such as the option-value model (Stock and Wise, 1990) of forward-

looking teachers is ideal for evaluation of the pension rule changes in the 1990s and predicting 

the effects of pension reforms. The Stock-Wise option-value model contains fixed parameters 

on teacher preferences independent of the pension rules. Such a structural model is well-

suited to analyze teacher behavior under the time-varying pension rules and to explore the
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effects of counter-factual retirement policies (Ni and Podgursky, 2016).

 We use an option-value model for retirement decisions based on Missouri 

administrative personnel data on public K-12 teachers from 1994 to 2008 to examine the 

implications of the pension-enhancement legislation. Missouri public school teachers, like 

nearly all public school employees, are covered by a defined benefit (DB) pension system in a 

state-wide educator plan – the Public School Retirement System (PSRS). Administrative 

data for teachers allow for a more precise identification of the labor supply effects of pension 

rules, because the late career teachers are tenured (hence exits are voluntary) and future 

teacher salaries are highly predictable.

 Estimating a dynamic structural retirement model in the presence of pension rule 

changes presents three general challenges that have not been addressed in the research 

literature. Since these problems arise in nearly all applied studies of retirement, we believe 

that the solutions employed in this paper represent useful contributions to the empirical 

retirement literature. The first problem concerns how one models teacher expectations of 

future pension enhancements. Pension rules change over time. Under a myopic expectation 

assumption, teachers expect the current rules to be unchanged in the future, and all future 

enhancements are surprises. However, in reality, if teachers expect enhancements in the near 

future they may postpone retirement, which leads a myopic model to over-predict near-term 

retirement. An alternative is perfect foresight, in which pension enhancements in the near 

future are perfectly forecasted. Other options are a hybrid of the two expectation models, or 

adaptive expectations that weigh by the probabilities of the current rules and the rules of the 

near future. We compare the fit of these competing models of expectations in our panel data 

set.

 A second estimation challenge is caused by the presence of sample selection bias in the 

baseline sample. Sample selection bias arises due to the fact that in the initial period some 

teachers were eligible for retirement but we only observe those who chose to continue working. 

The initial sample selection bias affects the remaining teachers in each subsequent year and 

sample selection evolves with pension rule changes. We model unobserved factors affecting 

retirement as serially correlated preference errors. A positive value of the error means the 

teacher has unobserved reasons that favor staying (given age and experience). The sample 

selection bias is addressed by deriving the distribution of the preference errors in the initial
2



period as a function of age and experience conditional on being observed in the initial sample.

 The third challenge is the high cost in using large panels of teachers tracked for many 

years. There are two aspects of this cost. First, it may be difficult or impossible to acquire 

teacher-level data in states that are reluctant to share such data with researchers. However, 

it is routine for state and local pension plans to prepare aggregated data files for actuarial 

cost calculations. Of course with aggregated data, individual confidentiality is more readily 

maintained. Second, computing likelihood values using teacher-level panel data is costly. In 

this paper, we develop an algorithm that allows for efficient computation of the likelihood by 

using grouped data by age and experience cells. Instead of tracking individual teachers (as in 

Stock and Wise, 1990 and Ni and Podgursky, 2016), we track the counts of (age, experience) 

cells. The algorithm utilizes the fact that teacher retirement DB rules are dependent only on 

age and experience. There is no loss of information if no additional covariates are used (e.g., 

characteristics of the teacher, school or district). This procedure makes it computationally 

feasible to exploit large panels of teachers (or other employees) from administrative data sets 

tracked over many years. Since these types of teacher data are available for many states, our 

cell-based approach facilitates more widespread estimation and simulation using structural 

retirement models.

 We find that the estimated model fits Missouri data very well in- as well as out-of-

sample. From a policy perspective, we find that the pension enhancements enacted during the 

1990s resulted in earlier retirement. For the baseline cohort of teachers in the 1994 sample, 

we estimate that enhancements reduced the average career by 0.3 years. This estimate 

understates the long-term effects because the enhancements did not affect all teachers in the 

1994 cohort. We also considered the long run in a steady state where the retired teachers 

are replaced by senior teachers. In a steady state, the enhancement reduced a typical career 

by more than one year. We also find the enhancements benefited senior teachers unevenly. 

Overall, the enhancements raised pension wealth (and hence plan liabilities) by 16 percent 

for senior teachers.
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2 Teacher Pension Rules and Enhancements

 In a DB plan, it typically takes 3-5 years for teachers to become vested in the system. 

Once vested, a teacher can collect her pension upon becoming retirement eligible. The normal 

retirement age is one way that eligibility is determined. Minimum retirement ages vary 

across plans, typically between the ages of 55 - 65. Retirement eligibility can also be based 

on service years (e.g., 30 years of service), or combinations of age and experience. There are 

also early-retirement provisions in most systems that allow individuals to retire and begin 

collecting a reduced benefit prior to normal retirement.

 In this paper we focus on Missouri teachers in the state pension plan. Under the current 

rules, Missouri teachers become eligible for a full pension if they meet one of three conditions: 

a) 60 years of age with at least 5 years of teaching experience, b) 30 years of experience (and 

any age), or c) the sum of age and years of service equals or exceeds 80 (“rule of 80”). 

Benefits at retirement are determined by the following formula (some variant of which is 

nearly universal in teacher DB systems): Annual Benefit=S × FAS × rf , where S is service 

years (essentially years of experience in the system), F AS is final average salary (calculated 

as the average of the highest three years of salary,) rf is the replacement factor. The cost of 

living allowance (COLA) is capped at a percent of the initial retirement annuity pursuant 

to the rules of the pension system. The replacement factor is .025 (2.5%) up to 30 years. 

Thus, a teacher with 30 years experience and a final average salary of $60, 000 would receive 

a 30 × $60, 000 × 0.025= $45, 000 annuity. There are several other minor adjustments to 

the formula. A “25 and out” option permits retirement at a reduced rate if teachers have 25 

or more years of experience. Finally, the replacement factor rf is 2.5% for experience up to 

30 years and 2.55% for experience of 31 or more years. The 2.55% at 31 years is paid on the 

30 inframarginal years as well. Thus the increase in the annuity for the 31st year is 2.55 + 

.05 (30) = 4.05%.

2.1 History of Pension Rule Changes

 The pension rules have changed over time. In the 1990s, state and local pension 

funds expe-rienced increases in their funding ratios (i.e., the ratio of assets to liabilities). 

The actuarial
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surpluses (or small deficits) were used to justify legislation that enhanced pension-benefit 

formulas for public workers. Educator pensions were among the most-actively enhanced. 

For example, the National Conference of State Legislators (NCSL) reports that educator 

pensions were enhanced in more than half the states (Koedel, Ni, Podgursky, 2014). In most 

states teachers’ benefits were automatically and retroactively adjusted for active teachers to 

reflect the enhancements at the time of their enactment without additional required contri-

butions. Therefore, teachers whose retirement plans happened to coincide with the timing of 

the benefit enhancements were able to collect the more generous pensions even though their 

lifetime contributions were structured to fund a much less remunerative flow of benefits.

 Table 1 describes the series of enhancements that occurred in the Missouri PSRS. In 

1992 the replacement factor was 0.021, final average salary was calculated based on the 

highest five years of earnings, and early retirement was possible through the “55 and 25” rule. 

The “55 and 25” rule allowed a teacher to retire and collect benefits without penalty if two 

conditions were met: (1) the teacher had to be at least 55 years old, and (2) she had to have 

accrued at least 25 years of system service. In 1994 the replacement rate was raised from 0.021 

to 0.023. By 2002 the replacement factor had been raised from 0.023 to 0.025, the final-

average-salary calculation changed from the highest five to highest three years of earnings, 

and the “25 and out” and “rule of 80” provisions had been incorporated into the system (the 

“rule of 80” is a more-flexible version of the “55 and 25” rule whereby retirement with full 

benefits can occur if age + experience sums to 80). In addition, the cap on the COLAs was 

raised from 65 to 80 percent of the baseline annual pension payment, and a retroactive bonus 

was added for teachers who reached their 31st year of system service.

(Insert Table 1 here.)

2.2 Expectations Regarding Pension Rule Changes

 Note that pension benefits are determined by the rules in place at the time of 

retirement. After retirement the benefit will not be adjusted if pension rules change. The 

retirement de-cision depends on expectations of future pension rules since these rules 

determine retirement benefits. Our sample period spans the years of enhancements in Table 1. 

After a couple of
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pension enhancements, teachers may have forecasted additional gains. Because teachers may

be forward looking, the effects of future rule changes on current retirement decisions depend

on whether they are anticipated. The typical official retirement date is July 1. The year we

use is the academic year (AY). Hence AY t starts on July 1 of the calendar year t− 1. The

rule Rt, effective in year t, applies to retirement filed before the end of AY t. In most cases

the pension rule changes were effective on July 1. Some of the important changes in rules

were introduced at the beginning of the AY. For example, the benefit rate was raised to 2.5%

from 2.3% on 7/1/1998 (the start of AY 1999); teachers who retired on 7/1/1998 may not

have anticipated the rule change when they made the decision prior to the retirement date.

Similarly, the “rule of 80” was introduced on 7/1/1999 (the start of AY 2000). In some cases

major changes were known to teachers in the middle of the AY. For instance, the “25 and

out” rule effective 7/1/1996 (which covers AY 1997) was introduced on 8/28/1995. Teachers

who considered retirement in 1996 had knowledge of the rule change almost one year ahead.

3 Simulating Retirement Decisions under Changing

Pension Rules

 Our focus is on the timing of retirement. We assume that an experienced educator 

teaching in the current year has two choices: teach next year or retire (stop teaching and 

collect a pension immediately or at a future date.) The salary schedule (as a function of 

experience) is known and fixed. The retirement decisions depend on current pension rules and 

the expectations of future rules.

 The Stock-Wise option-value model assumes that a teacher chooses the year of 

retirement to maximize the expected present value of the utility of the salary and retirement 

benefit flows given current information, but does not take into account the value of options in 

the future, as she is assumed to do in a dynamic programming setting. Several studies 

examine retirement decisions by simulating or estimating structural models through dynamic 

programming (e.g., Rust and Phelan 1997, French and Jones 2011, Knapp et. al., 2016).1

1An earlier study by Gustman and Steinmeier (1986) estimates a life-cycle model with time-invariant 
preference errors.
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The model in this study borrows heavily from Stock and Wise, and is simplified by the 

omission of Social Security (PSRS teachers are not in Social Security). Compared to dynamic 

programming, the simplicity of the option-value model affords several key benefits. First, it 

allows for lower computation cost of the likelihood function in the presence of complications, 

such as the consecutive changes in policy in the 1990s and the strong serial correlation of 

preference errors (based on empirical evidence presented later in this paper). In addition, 

solving the selection bias problem in the baseline sample requires accurately computing the 

probability that a teacher appears in the initial sample. Following Stock and Wise, we 

also assume normality in preference errors, which allows us to compute the likelihood of 

the initial condition jointly with the likelihood of sample of panel data. Dealing with these 

two statistical problems is much more difficult in a dynamic programming framework. For 

example, numerical solutions to a dynamic programming problem with the complications 

in this paper will involve significant approximation error. Finally, we see no simple way 

to use grouped (age, experience) cell data rather than teacher panel data in a dynamic 

programming framework. Fortunately, Lumsdaine et al. (1992) find that the option-value 

model yields similar predictions to a dynamic programming model. After weighing the 

trade-offs, we choose to use the simpler option-value model in this study. As will be noted 

below, we believe the good in-sample fit for our model provides justification for our empirical 

methodology.

3.1 Tracking the Panel Data of (Age, Experience) Cells

 Let N(a, e, t) be the number of teachers with (age, experience) (a, e) at the beginning 

of period t, and r(a, e, t) be the retirement probability in period t, (t = 1, 2, ..., Λ). Struc-tural 

models such as the Stock-Wise option-value model of retirement dictates how r(a, e, t) 

changes with a change in rules. In the sample of senior teachers we assume a ≥ al and 

el ≤ e ≤ a − al, where al is a minimum age in the sample, el is the minimum experience. 

For the 1994 sample al = 47, el = 5. The teacher distribution in period t > 1 is given by

N(a, e, t) = N(a− 1, e− 1, t− 1)[1− r(a− 1, e− 1, t− 1)], (1)
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for a ≥ al + t− 1 and el + t− 1 ≤ e ≤ a+ t− al − 1.

Starting from an initial distribution N(a, e, 1) in the beginning of period 1, in the begin-

ning of period t > 1 the remaining teachers are

N(a+ t− 1, e+ t− 1, t) = N(a, e, 1)st(a, e),

where st(a, e) =
∏t−1
j=1[1− r(a+ j−1, e+ j−1, j)] is the survival rate of a teacher with initial

age and experience (a, e) until the beginning of period t.

The probability of a teacher with initial age and experience (a, e) in period 1 retiring

in period t > 1 is G1,t(a, e) = r(a + t − 1, e + t − 1, t)st(a, e). The probability she remains

teaching at the end of the sample period is sΛ(a, e) = 1 −∑Λ
t=1 G1,t(a, e). The retirement

hazard r(a+ t− 1, e+ t− 1, t) conditional on the initial (a, e) is determined by a structural

model for a given set of parameters (estimated below).

3.2 The Option-Value Model under Different Expectations

of Future Pension Rules

     We will use the following notation for expectations of future pension rules. Recall by our 

earlier notation, rule Rt, effective in year t, applies to retirement filed before the end of AY t. 

So when a teacher makes a retirement decision in period t (AY t) on whether to retire at the 

beginning of AY t + 1, we assume she uses one of the following to calculate the pension benefit.

(M) Myopic (rule Rt).

(P1) One step perfect foresight (rule Rt+1).

(A1) Adaptive expectation (follow (M) for years 1995 and 1996, then follow (M) with 

probability p and follow (P1) with probability (1-p)).

The adaptive learning in expectations on future rule changes is based on the following 

assumption: Because 1995-1996 are the first two years of major pension rule enhancements, 

teachers may not expect continuous enhancements at the time. We assume retirement deci-

sions in 1995 and 1996 are based on the current pension rules in 1995-1996. But by 1997,
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after consecutive enhancements, teachers may have anticipated more generous pension rules 

in the future. So, after 1997, we assume teachers give the current rule a weight p and rule of 

the next year a weight 1 − p. This case is labeled as adaptive (A1). One may interpret the 

assumption (A1) as follows: with probability p a teacher does not pay attention to the news 

on pension rules or she is committed to making a retirement decision based on the current 

rules, and with probability 1 − p she is informed regarding the rule changes in the next 

AY and has the flexibility to make her retirement decision based on the new information. 

Hence under (A1): in t=1995 and 1996, teachers calculate pension benefits using rule Rt; in 

1997 ≤ t ≤ 2002 teachers calculate expected pension benefits using rules Rt with probability 

p and rules Rt+1 with probability 1−p; and after t ≥ 2003 teachers calculate pension benefits 

using rule Rt (which is the same as Rt+1).

3.2.1 Myopic Expectations (M)

 We introduce the model of retirement under the case of myopic expectations and 

assume that the teachers calculate the expected future pension benefit based only on the 

current rules. Applying the Stock-Wise model to teacher retirement, we first write the 

teacher’s expected utility in period t as a function of expected retirement in year m (with m = 

t, · · · , T and T = 101 is an upper bound on lifespan). Denote year t the prevailing pension rules 

as Rt, the teachers’ contribution rate as ct. In year t, the expected utility of retiring in period 

m is the discounted sum of pre- and post-retirement expected utility

IEtV
M
t (m,Rt) = IEt{

m−1∑
s=t

βs−t[(ks(1− ct)Ys)γ + ws] +
T∑

s=m

βs−t[(Bs(Rt,m))γ + ξs]}, (2)

where Ys is real salary in period s, Bs(Rt,m) is the real pension benefit collected in year s

under the rules of year t, Rt, if the teacher retires in year m ≥ t. The salary is a function of

teacher’s experience, and the pension benefit depends on the teacher’s age, experience, and

the pension rules. The superscript “M” indicates the myopic expectation of future pension

rules. For notational simplicity we do not specify the age and experience of the teacher. The

parameter ks captures the dis-utility of working. We assume ks to be decreasing with age:

ks = κ( 60
age

)κ1 , where age is the age in period s. With this setting one dollar of salary is

9



worth ks dollars of pension benefit in same period and we expect 0 < ks < 1.

The unobserved innovations in preferences are AR(1): ws = ρws−1 +εws, ξs = ρξs−1 +εξs.

Denote the error terms νs = ws − ξs, εs = εws − εξs. Then it follows that:

νs = ρνs−1 + εs. (3)

We assume εs is iid N(0, σ2). The retirement decision in year t is choosing m = t, · · · , T that 

maximizes IEtVt
M (m, Rt).

This is termed an “option value” model since the retirement decision is

irreversible. Because the future is uncertain and the teacher is risk averse, there is a

value associated with continuing teaching and keeping the retirement option open.

Besides the uncertainty in preference shocks there is an uncertainty of survival: For a

teacher alive in year t we denote the probability of survival to period s > t as π(s|t). To

quantify the option-value, write the expected gain from retirement in year m over retirement

in the current period t as:

Gt
M (m, Rt) = IEtVt(m, Rt) − IEtVt(t, Rt) = gt    (m, Rt) + Kt(m)νt, (4)

where

gMt (m,Rt) =
m−1∑
s=t

π(s|t)βs−t(ks(1− ct)Ys)γ +
T∑

s=m

π(s|t)βs−t(Bs(Rt,m))γ

−
T∑
s=t

π(s|t)βs−t(Bs(Rt, t))
γ (5)

is the difference in expected utility between retiring in year m > t and retiring now (in year t).

A closer look at the last two terms in (5) sheds light on the trade-off on delaying retirement.

By retiring in year m > t, the teacher receives a higher annuity: (Bs(Rt, m) > Bs(Rt, t) for

all s ≥ m), but she receives the benefit for m − t fewer years, and draws a salary with an

increasingly high discount rate for the disutility of working.

Because the teacher’s future salary and pension benefits are very predictable, in the

empirical analysis we replace the expected salary and benefit in gt(m, Rt) with a forecast based

10
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on historical data. We find the logarithm of salary is accurately predicted by a cubic function

of experience. In the last term in (4), Kt(m) =
∑m−1
s=t π(s|t)(βρ)s−t depends on unknown pa-

rameters and the AR(1) error term νt given in (3). Let m†t(Rt) = argmax gt(m,Rt)/Kt(m),

then the probability that the teacher retires in period t (Gt(m,Rt) ≤ 0 for all m > t) is

Prob(
gMt (m†, Rt)

Kt(m†)
≤ −νt). (6)

3.2.2 Perfect Foresight (P)

 Under perfect foresight of future pension rules the expected utility in period t of 

retiring in period m becomes

IEtV
P
t (m,Rt) = IEt{

m−1∑
s=t

βs−t[(ks(1− cs(Rm,m))Ys)
γ + ws] +

T∑
s=m

βs−t[(Bs(Rm,m))γ + ξs]}, (7)

The superscript “P” indicates the perfect foresight expectation of future pension rules. A

more empirically plausible expectations of pensions rules are foresight of the next year de-

noted by (P1).

Under (P1), the gain in expected utility by retiring in year m ≥ t + 1 over retiring now

(in year t) IEtVt(m,Rt)− IEtVt(t, Rt) can be written as

gP1
t (m,Rt) =

m−1∑
s=t

π(s|t)βs−t(ks(1− cs(Rt+1,m))Ys)
γ +

T∑
s=m

π(s|t)βs−t(Bs(Rt+1,m))γ

−
T∑
s=t

π(s|t)βs−t(Bs(Rt, t))
γ.

The probability that the teacher retires in period t is given by (6) where gMt (., .) is replaced

by gP1
t (., .).

3.2.3 Adaptive Expectations (A1)

 Suppose in period t the teacher assumes that there is a probability p that the current 

rule Rt prevails in a future period m > t, and a 1 − p probability that in period m the rule of 

the next year Rt+1 replaces the current rule. So the myopic case corresponds to p = 1 and
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the perfect foresight of the next year’s rule corresponds to p = 0. We label this adaptive

expectation of future pension rules by a superscript “A1”.

The case (A1) is a combination of the case (M) and the case (P1). In the setting of the

previous example, IEVt(m, Rt) in year t ∈ [1995, 1996] for any (m > t) pt = 1. After 1996,

IEVt(m, Rm) in year t (t > 1996) for any (m > t) pt = p; and t(t > 2002) for any (m > t)

pt = 1 (which is empirically equivalent to pt = 0 in the absence of rule changes.)

Under assumption (A1) the difference in expected utility between retiring in year m > t

and retiring now (in year t) is

IEtV
A1
t (m,R)

= pIEt{
m−1∑
s=t

βs−t[(ks(1− cs(Rt,m))Ys)
γ + ws] +

T∑
s=m

βs−t[(Bs(Rt,m))γ + ξs]}

+(1− p)IEt{
m−1∑
s=t

βs−t[(ks(1− cs(Rt+1,m))Ys)
γ + ws] +

T∑
s=m

βs−t[(Bs(Rt+1,m))γ + ξs]},

The retirement probability in Model (A1) can be computed similarly as that in Models

(M) and (P).

The structural parameters are θθθ = (γ, κ, κ1, β, σ, ρ) for Models (M) and (P1); and θθθ =

(γ, κ, κ1, β, σ, ρ, p) for Model (A1).

3.3 Likelihood by Age-Experience Cells

The condition (6) is affected by the time-varying pension rules as well as expectations

of pension rules. Denote

f+
t =

gt(m
†, Rt)

Kt(m†)
= maxm≥t{

gt(m,Rt)

Kt(m)
}. (8)

Here we omit the superscript on gt(m
†, Rt) with respect to expectations of pension rules.

Suppose a teacher i is observed for period 1, 2, .., ni. Denote her preference error as ννν1,ni
=

(ν1, · · · , νni
)′ and fff+1,ni

= (f+
1 , ..., f

+
ni

)′. If she retired in ni (ni < Λ) then the observations

on teacher i imply ννν1,ni
> −fff+1,ni

. ννν1,ni
∈ Ai ⊂ Rni , where Ai is defined by the joint event

{ννν1,ni−1 > −fff+1,ni−1

⋂
(f+
ni
≤ −νni

)|in the initial sample}. If the teacher did not retire at the
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end of the sample then ni = Λ and ννν1,Λ > −fff+1,Λ. Denote the probability of that the teacher

observed in period 1 retires in ni as

G1,ni
= prob(ννν1,ni−1 > −fff+1,ni−1

⋂
(f+
ni
≤ −νni

)|in the initial sample).

∑ΛThe probability of not retiring is prob(ννν1,Λ > −fff1
+
,Λ|in the initial sample) = 1 − j=1 G1,j .

 Denote the data on teacher i as yyyi, and data on all teachers (i = 1, 2, .., I) as YYY. 

The likelihood of the sample data YYY is

L(YYY; θθθ) =
I∏
i=1

∫
Ai

φ(ννν1,ni
)dννν1,ni

, (9)

Λ Λ

where φ(.) denotes multivariate normal density distribution of N(0, ΣΣΣi). The covariance

matrix of ννν1,ni , ΣΣΣi, depends on σ and ρ. Evaluating the likelihood involves computing high 

dimensional integration for each teacher. In practice, the number of teachers I is quite large for 

large states. Computing the likelihood of the sample can be quite costly.

 For a teacher’s retirement decision, the observable variables are few (age, experience, 

gender). If age and experience are sufficient statistics for a teacher’s retirement incentive under 

a given set of pension rules then instead of tracking the decisions of each teacher, we track the 

(age, experience) cells, based on the following analysis. In each period (from 1 to Λ), a senior 

teacher in our sample chooses between irreversible retirement or continuing teaching. If she 

chooses the latter both her age and experience gain by one. The retirement

decision of teacher i is yit ∈ {0, 1}, t = 1, .., Λ; where yit = 1 if the teacher retires in period∑ ∑
t, and yit = 0 otherwise. Hence t=1 yit = 1 if the teacher retires and t=1 yit = 0 if she

remains teaching at the end of the sample period.

Denote the probability of retiring in period t, conditional on age and experience in the

initial sample period by G1t(a, e). The likelihood function of parameter θθθ of teacher i is

Li(yyyi; θθθ) =
Λ∏
t=1

[G1t(ai, ei)]
yit [1−

Λ∑
t=1

G1t(ai, ei)]
1−

∑Λ

t=1
yit .
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The likelihood of the whole sample is

L(YYY; θθθ) =
I∏
i=1

Li(yyyi; θθθ) =
I∏
i=1

Λ∏
t=1

[G1t(ai, ei)]
yit [1−

Λ∑
t=1

G1t(ai, ei)]
1−

∑Λ

t=1
yit

=
Λ∏
t=1

∏
i|ai=a,ei=e

[G1t(a, e)]
∑

i|ai=a,ei=e
yit [1−

Λ∑
t=1

G1t(a, e)]
∑

i|ai=a,ei=e
(1−

∑Λ

t=1
yit).

We denote N(a, e, 1) as the number of teachers with (age, experience) (a, e) in the be-

ginning of the initial period, we now denote the counts of retirement of teachers with initial

(a, e) in period t as R(a, e, t) =
∑
i|ai=a,ei=e yit, then

L(YYY; θθθ) =
Λ∏
t=1

∏
a,e

[G1t(a, e)]
R(a,e,t)[1−

Λ∑
t=1

G1t(a, e)]
N(a,e,1)−

∑Λ

t=1
R(a,e,t). (10)

The alternative expression of the likelihood (10) means that we only need to track the

retirement counts of (a, e) cells, instead of tracking the panel data of individual teachers.

3.4 Adjusting for Sample Selection Bias Using the Distribution of

Initial Preference Errors

 Figures 1 and 2 plot marginal distributions of the initial sample of the 1994 cohort 

by age and by experience, and the joint distribution of age and experience. The plots 

show that about 15% of the teachers in 1994 are eligible for retirement.

(Insert Figures 1-2 here.)

Age and experience for teachers included in the sample are right-censored. We observe 

retirement age and experience for teachers who retired during our panel and do not 

observe the retirement year of the teachers who continued to teach at the end of the 

sample period (the latter is roughly 6% of the sample.) However, this censoring does not 

result in biased parameter estimates.

More consequential issue are left-truncated data. The sample data in the initial year

1994 include all teachers of age 47-64 in that year. The data set includes teachers who were

eligible for retirement but who chose to wait, but excludes those who chose to retire prior
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to 1994. There is no simple solution to the sample truncation problem in our panel since

starting with a younger base-year sample (e.g., 40-45 in 1994) means that the majority of

the teachers would still be ineligible to retire at the end of the panel, and “early leavers”

would have been over-represented among the retirees. Moreover, with a younger cohort some

teachers are more likely to have left the sample for reasons other than retirement.

For the “stayers” in 1994 (where t = 1), ν0 ≥ −g0(m†,R0)
K0(m†)

. This implies that ν0 differs

from the unconditional stationary distribution N(0, σ2

1−ρ2 ). Without taking into account this

sample selection bias, one would draw the initial value ν1 from the unconditional stationary

distribution. This would result in over-prediction of retirement in the initial years. The

longer a teacher has become retirement eligible in the initial sample (say J years ago) the

more likely her preference shock in the initial period has a large value.

In the present setting, selection (of “early leavers”) occurs when ν0 falls below a threshold

(that is a function of J). Hence the sample selection in this setting is an example of the famil-

iar “initial condition problem” in dynamic panel data models ( Heckman, 1981; Wooldridge,

2005). In a typical initial condition context, ν0 is correlated with latent teacher-specific

effects and observations prior to the initial year may be missing for some teachers, but the

whole sample of teachers is observed. In our context we do not have any data on the “early

leavers” and we are thus unable to apply off-the-shelf solutions to the initial condition prob-

lems for nonlinear panel data models. In our problem, the sample selection process is the

same as the decision model of retirement, but widely-used two-step procedures for sample

selection (e.g., Heckman 1979) are not applicable here because we do not have additional

data to separately estimate the selection process.

We solve the problem of missing “early leavers” by estimating the model conditioning

on the probability that retirement-eligible teachers are in the initial sample. The option-

value model depicts how the sample selection depends on the preference errors prior to the

initial sample period, (ν−J , ..., ν0). The likelihood of the sample can then be computed by

integrating out these preference errors as well as the preference errors in the sample period

as in (9). The computational cost of the exercise can be prohibitively high for a general

problem, but not so for the present problem for reasons explained below.
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The retirement probability conditional on being observed in the sample is

prob(retiring in period n|in initial sample) =
prob(retiring in period n, in initial sample)

prob(in initial sample)
.(11)

The probability prob(retiring in period n, in initial sample) is computed under the

assumption that in the first year of eligibility, the preference error ν−J ∼ N(0, σ2

1−ρ2 ). Note

J depends on the age and experience of the initial year.

Denote ννν−J,0 = (ν−J , ..., ν0)′, ννν−J,n−1 = (ν−J , ..., νn−1)′, fff+−J,0 = (f+
−J , ..., f

+
0 )′, fff+−J,n−1 =

(f+
−J , ..., f

+
n−1)′. The condition for the teacher in the initial sample is

ννν−J,0 > −fff+−J,0. (12)

The precise formula for the statement in (11) is

G1,n = prob[((ννν1,n−1 > −fff+1,n−1)
⋂

(f+
n ≤ −νn))|ννν−J,0 > −fff+−J,0]

=
prob[(ννν−J,n−1 > −fff+−J,n−1)

⋂
(f+
n ≤ −νn)]

prob(ννν−J,0 > −fff+−J,0)
. (13)

Algorithm1(t1, t2) computes the probability of retirement in t2 for a teacher with the first

eligible year t1. The algorithm is in Appendix 1. The numerator in (13), prob[(ννν−J,n−1 >

−fff+−J,n−1)
⋂

(f+
n ≤ −νn)], can be computed using Algorithm 1(−J, n).

Algorithm2(t1, t2) computes the probability of staying in t2 for a teacher with the first eli-

gible year t1. The algorithm is also given in Appendix 1. The probability in the denominator

in (13), prob(ννν−J,0 > −fff+−J,0) can be computed using Algorithm2(−J, 0).

The algorithms are based on the Geweke–Hajivassiliou–Keane (GHK) simulator (see e.g.,

Börsch-Supan and Hajivassiliou 1993), which is more efficient in computing high-dimensional

integrations than brute-force Monte Carlo simulations. A new feature in the application

of the GHK algorithm here is that the initial condition is adjusted based on institutional

knowledge of the pension rules. With time varying rules, f+
t depends on the expectation of

pension rules.

In these algorithms one may note that the left-side truncation of the preference shocks
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before the initial sample period, (ε−J , .., ε0), shifts ν0 to the right. Hence the initial preference

error for a retirement eligible teacher in the initial year has a positive (instead of zero) mean.

By estimating the probability that a retirement-eligible teacher is in the initial sample, we

solve the initial condition problem by using the institutional knowledge in this nonlinear

setting instead of using classical methods.

4 MLE Estimation and Diagnostics

4.1 MLE Estimation Results

      The option-value model described in the previous section is estimated on a cohort of 12,871 

Missouri PSRS teachers aged 47-64 and with five or more years of experience in the 1993-1994 

academic year. We track the cohort forward to the 2008 academic year. Table 2 reports 

descriptive statistics on this sample. In the base year 1994 about 74% of teachers in the sample 

are female, with average age 52.15 and an average of 21.48 years of teaching experience. Over 

the 14-year panel, roughly 94% of the teachers in the cohort retired.

(Insert Table 2 here.)

Obtaining the MLE estimates requires repeated evaluations of the likelihood of the panels 

with a large number of teachers. The likelihood evaluation involves numerical integrations of 

dimensions of the length of the sample period (in this study 14 plus the years of retirement 

eligibility prior to 1994), and if likelihood is evaluated for each teacher, the high-dimensional 

integrations are needed 12,871 times for one likelihood evaluation of the whole sample. We 

achieve relatively low computational cost in two ways. First, we use Algorithm1 and Al-

gorithm2 for efficient computation of high-dimensional integrations. Second, we track the 

counts of (age,experience) cells instead of teacher-level panel data. The number of cells are 

fixed by the range of age and experience. Teachers in the 1994 cohort with age 47-64 and 

5-46 years of experience are grouped into 513 cells (18×42=756 cells subtracting cells where 

the experience is too high for the age, assuming the minimum age for a novice teacher is 22) 

and tracked forward for 14 years. The computation time is independent of the number of 

teachers since the number of cells is fixed. If we use teacher-level data we need to simulate
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12,871 teachers it would take about 25 times the number of computations compared to a 

cell-based approach. The computation time increases in the number of teachers and the 

length of the sample period. For a sample of teachers in a much larger state and/or a longer 

sample period, the computation time using teacher-level data can be much higher.

The retirement decisions depend on the expectations of future pension rules. Table 3 

shows MLE estimates of structural parameters, (β, κ, κ1, γ, σ, ρ, p), in the retirement models 

for females and males separately under the following expectation assumptions: myopic (M), 

one step perfect foresight (P1), and adaptive expectation (A1). All cases are adjusted for 

the sample selection bias.

For all cases, the estimates of all parameters are economically plausible. The left half 

of Table 3 is the MLE estimates of structural parameters for females and the right half 

is for males. The estimates of β, the discount factor, which measures the time value, are very 

similar for all the cases (around 0.955, or 4.5% annual discount rate). The parameter γ 

captures the risk preference or elasticity of intertemporal substitution for teachers. The 

estimates of γ are less than one, meaning the teachers are risk averse or prefer smoothing the 

income flow over time. The parameter σ measures the heterogeneity of unobserved preference 

errors for teachers. The preference errors intend to capture unmeasured factors that are 

relevant for the retirement decision: e.g., the teacher’s health or family-related factors. The 

persistence of the preference errors is captured by the parameter ρ. The estimates of ρ differ 

by expectations of pension rules, but are all large and positive. Recall the parameter ks 

measures the disutility of working. The disutility of working depends on age. The estimates 

of κ implies that at age 60, one dollar of salary is equivalent to about seventy cents of pension 

benefit.

For female and male teachers the likelihood of adaptive expectation case (A1) is larger 

than other cases, as we would expect. The adaptive case (A1) is more flexible than the 

myopic expectation and perfect foresight.

(Insert Table 3 here.)

We also use the estimates in Table 3 to simulate the retirement probability under different 

models and compute aggregate statistics of interest to policy makers such as the survival
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rate and the age/experience distribution of retiring teachers. We compare the fit of these 

statistics of interest under each model of expectation, as a supplement to the overall fit 

measured by the likelihoods.

4.2 In-Sample Goodness of Fit

     We begin with overall employment versus retirement. For teachers in each age-experience 

cell in 1994, we simulate the probability of retiring in each year from 1995 to 2008, and not 

retiring in 2008. We aggregate the simulated probabilities of each cell and compare them to 

statistics based on observed retirement data. Unless gender is specified, the tables and figures 

in the paper pertain to data or simulation results combined by gender. Figure 3 plots the 

observed fraction of the 1994 cohort who remain teaching each year from 1995 to 2008, and 

the simulated survival rates under different models of pension rule expectations. The 

simulated survival rates from all three models of expectations track the observed rate quite 

closely.

(Insert Figure 3 here.)

Table 4 reports the year-by-year prediction of the share of retiring teachers based on MLE 

estimates under expectation models (M), (A1), and (P1). Among the three models (A1) does 

best in terms of the in-sample MSE. For most years, the prediction errors for all three models 

are within a reasonable range, except for 1998 and 2001. Closer examination of the misfits of 

the model in these two years reveals the difference in the nature of the expectation models and 

their limitations.

(Insert Table 4 here.)

As noted in Table 1, in 1997 the rule “25 and out” was introduced to allow early retire-

ment. There is a large increase in observed retirement in 1997 over that of 1996, followed by

a slight decrease in 1998. This is expected if some teachers chose early retirement following

the new rule. The myopic Model (M) under-predicts retirements in 1997 and substantially

over-predicts retirements in 1998. The misfits are concentrated in cells that are directly

affected by the introduction of “25 and out” (the cells with age below 55 and experience be-

tween 25 and 30.) In contrast, the perfect foresight model slightly over-predicts retirements
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in 1997. The perfect foresight model fits better than the myopic model. As we noted in

Section 2.2, the “25 and out” rule was announced early in the AY 1997. The prediction of

the adaptive expectation model (A1) is in between of the two extreme models. Its prediction

errors in 1997 and 1998 have the same signs of prediction errors as Model (M), but are much

smaller in magnitude.

Unlike the misfit of 1997, which is easily explained by expectations, in 2001 all three

models substantially under-predict retirement. One may wonder whether this is because

the model poorly predicts responses to the introduction of the “rule of 80” in year 2000.

However, that is not the case since in our cohort of teachers, by year 2000 most teachers who

satisfy the “rule of 80” met the regular retirement requirements in the absence of the rule

anyway. Hence the new rule is not expected to have a significant effect. Closer examination

at the fit of age-experience cells in 2001 shows that the under-prediction is largely because

of cells with experience over 30 years and age 53-58 that are legible for retirement without

the “rule of 80” and not because of the cells made retirement legible by the rule.

We speculate that the three models under-predict retirement in 2001 because there are

important elements missing in all three models. In early 2000, the U.S. stock market peaked

and started to decline after the several years of unusually high returns. During the dot.com

bubble the annual returns to NASDAQ composite index were 39.9% in 1995; 22.7% in 1996;

21.6% in 1997; 39.6% in 1998; 85.6% in 1999; and -39.3% in 2000. As we noted earlier,

the pension enhancements nationwide were correlated with the stock market run-up in the

1990s. It is likely that teachers associated the end of the bull market with the end of major

future enhancements. Such expectation would be reasonable and turn out to be correct

(even though a minor enhancement was implemented in 2002.) The expectation of the end

of enhancements pushes more teachers to retirement than our models predict. If we introduce

a time fixed effect into the model it would eliminate the misfit of 2001 for all models, but it

is hard to justify and unhelpful for out-of-sample prediction.

Overall, the models fit well for most years during the sample period. To examine how well

the estimated models fit data in more detail, we also compare the observed and simulated

age distribution of retiring teachers every year from 1995 to 2008. The plots (available

upon request) show that age-experience distributions simulated under different expectations
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of pension rules are very similar. In addition, the simulated distributions almost perfectly

match the observed distribution for teachers who choose to teach each year.

Figure 4 shows that all models capture the pattern of the joint age-experience distri-

butions for retired teachers quite well. This suggests that the option value model captures

not only the dynamics of the number of retirements, but also the age and experience of the

teachers at the time of retirement.

(Insert Figure 4 here.)

Recall that our data in the initial year (AY94) only includes teachers who are still teaching

in the initial year and excludes those who already retired before then. Without adjusting for

sample selection bias, one would draw the initial value ν0 from the unconditional stationary

distribution N(0, σ2

1−ρ2 ) and compute the unconditional probability of retirement. This will

result in over-prediction of retirement in the initial years for reasons explained in Section 

3.4. Figure 5 reports the observed and predicted survival rates with and without adjustment 

for sample selection bias under (A1) expectation of pension rules. In the first three years, 

without adjusting for sample selection the model predicts lower survival rates (and predicts 

more retirements). This pattern holds for any model of pension rule expectation and for any 

set of parameters. In Figure 5 the survival rate simulated from Model (A1) adjusted for 

sample selection bias fits the data much better than the model without adjustment.

(Insert Figure 5 here.)

4.3 Out-of-Sample Goodness of Fit

 In this section, we examine the out-of-sample predictive performance of the estimated 

models. We simulate retirement decisions using parameters estimated based on 1994-2008 

sample in Table 3 to predict the retirement behavior for a 2010-11 cohort aged 47-64 with at 

least 5 years of experience. We track this cohort forward to 2013-14. There were no pension 

rule enhancements during this period (or to the present time), and it is reasonable to assume 

that teachers did not expect pension rule changes during the period. Hence there is no 

difference in rules between myopic and perfect foresight expectations. However, the 

simulation results will differ because of differences in estimated parameters estimated based 

on different expectation
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models.

Table 5 compares the observed and simulated survival rates. The last three columns of

Table 5 reports the residuals of simulated survival rates. The out-of-sample predictions under

myopic expectations tend to error on the side of under-prediction of survival rates. Overall,

the models fit the data well. In particular, the adaptive expectation model provides a good

fit to the actual values. It is not surprising that the adaptive model would provide better

in-sample fit, since it involves an extra parameter. However, the resulting core behavioral

parameters that emerge from the A1 model seem to provide better out-of-sample fit as well

(even in the absence of plan changes).

(Insert Table 5 here.)

5 The Effect of Pension Enhancements

 Pension enhancements change the gain in the option-value of working versus retiring. 

The question we seek to answer is how would the teachers alter their retirement in the absence 

of the enhancements observed during the sample period. The observed enhancements are 

generally of two types. One allows for earlier retirement, e.g., “25 and out” and “rule of 

80”. This type of enhancement leads to earlier retirement. Another is an increase in the 

retirement benefit. Some new benefits seem designed to induce later retirement (for example, 

raising the replacement factor from 2.5% to 2.55% if the teacher retires with at least 31 years 

of experience, but this turns out have a minor effect.) A more expensive cross-board increase 

in the replacement factor (from 2.3% to 2.5%) for all teachers taking regular retirement has 

a less obvious effect on retirement. The increase in replacement factor raises pension wealth 

for any given level of experience and should “pull” teachers towards retiring to the peak 

value year. Intuitively the “pull” effect should help to delay retirement. In the following we 

show that raising the replacement also increases the “push” effect after passing the pension 

peak.

To analyze the “push” effect of an across-the-board benefit raise, we consider, for sim-

plicity, the case of perfect foresight, with a constant contribution rate, and fixed pension rule

22



R. Then the deterministic gain of staying until m over retiring in current period t is

gt(R,m) =
m−1∑
s=t

π(s|t)βs−t(ks(1− c)Ys)γ +
T∑

s=m

π(s|t)βs−t(Bs(R,m))γ

−
T∑
s=t

π(s|t)βs−t(Bs(R, t))
γ.

Assume the real benefit is roughly constant over time so Bs(R, .) can be denoted as

B(R, .). For senior teachers who qualify for regular retirement and pass the peak of pension

wealth, under each rule B(R,m)/B(R, t) is roughly (1+rf)m−t (where rf is the replacement

factor.) Suppose there are two pension benefit rules, Rl and Rh, with high and low benefits:

B(Rh,m) = (1 + τ)B(Rl,m) for any m ≥ t. Then the difference between the net benefits of

retiring in period m instead of in period t is

gt(R
h,m)− gt(Rl,m)

= (
T∑

s=m

π(s|t)βs−t[(B(Rh,m))γ − (B(Rl,m))γ])︸ ︷︷ ︸− (
T∑
s=t

π(s|t)βs−t([(B(Rh, t))γ − (B(Rl, t))γ])︸ ︷︷ ︸
(pension of h− pension of l) if retire in m (pension of h− pension of l) if retire in t

≈ (B(Rl, t))γ[(1 + τ)γ − 1]{(1 + rf)(m−t)γ(
T∑

s=m

π(s|t)βs−t)− (
T∑
s=t

π(s|t)βs−t)}

< (B(Rl, t))γ[(1 + τ)γ − 1][((1 + rf)γβ)(m−t) − 1](
T∑
s=t

π(s|t)βs−t).

The last inequality follows from the fact that
∑T
s=m π(s|t)βs−t < βm−t(

∑T
s=t π(s|t)βs−t). The

inequality implies that gt(R
h,m)−gt(Rl,m) < 0 if (1+rf)γβ < 1. From the Missouri pension

rules and the parameter estimates reported in Table 3, rf = 0.025, γ ≈ 0.7, β ≈ 0.96,

which implies gt(R
h,m) − gt(R

l,m) < 0. Dividing the difference in g(., .) by Kt(m) =∑m−1
s=t π(s|t)(βρ)s−t does not change the sign. Hence raising the benefit rate reduces the

welfare gain from staying and raises the retirement probability at t, through a stronger

“push” effect. The numerical simulation shows that on net the ”push” effect dominates the

“pull” effect for Missouri teachers, and the rise in the replacement factor leads to earlier

retirement on average.

Since the calculation above compares fixed pension rules, it approximates the long-term
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effects of switching from Rl to Rh. The short-term effect may differ. Consider the case of

an anticipated raise in benefit in the next several years, the gain from staying increases and

current retirement should decrease.

Lowering the eligibility requirement on age and/or experience leads to earlier retirement.

But the short-term effects for a given cohort differs quantitatively from long-term effects for

a steady state population of senior teachers. In the short-term, as the requirements were

relaxed, a fraction of the cohort who would have retired using the new rules already passed

the age/experience threshold stipulated by the new rules. This is particularly relevant for

the rules introduced later in the sample period (such as the “rule of 80”.) But in the long-

term all senior teachers have an opportunity to retire under the new rules. Hence, in the

long term the average retirement age should be reduced more than in the short term. In the

following section we analyze the short- and long-term effects of the pension enhancements.

5.1 The Effects of “25 and Out” and “Rule of 80” on the 1994

Cohort

     We now quantify the effects of specific pension enhancements in PSRS during 1994-2002, 

including “25 and out” and the “rule of 80”. In this section, we conduct counterfactual 

analysis on how teacher retirement would differ from the historical data if no “25 and out”, 

“rule of 80”, or any enhancements took place.

To quantify the effects of pension enhancements on retirement of teachers in 1994 cohort, 

we simulate the retirement probability for the next 30 years. The baseline case is the 1994 

cohort that experienced the enhancements which occurred in the sample period. Table 6 

reports the simulated average retirement age and experience in different counterfactual cases 

under different expectation assumptions. The average retirement age and experience in the 

baseline case are lower than in all counterfactual cases meaning the pension enhancements 

induced teachers to retire earlier. Among these different counterfactual cases, the scenario of 

no enhancements has the most significant impact on average retirement age and experience 

since it removed two rules, “25 and out” and “rule of 80”, and maintained a lower replacement 

factor 2.3%. The effect of “rule of 80” is smaller compared to other cases because the rule
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was introduced in 2000. At that time, many teachers have retired and a sizable proportion 

of teachers could qualify for the regular retirement in the absence of the rule. Hence only 

a small proportion of teachers would be affected by this rule. However, “25 and out” was 

introduced in 1997, much earlier than “rule of 80”. So it could affect more teachers and the 

effect should be larger.

5.2 Steady State Estimates of Pension Enhancements

     The above empirical analysis is conducted by tracking the 1994 cohort for 30 years. During 

the sample period, the pension rule changes were introduced for a cohort many of whom had 

already passed the age and/or experience thresholds that are affected by the rule changes. 

Because the rule changes only affected part of the sample, the simulated short-term effects 

understate the full effect of the rule changes.

Appendix 2 shows that as the retired teachers are replaced by new senior entrants (those 

with age of 47 or experience of 5), under each pension rule in the long run the distribution of 

senior teachers converges to a stationary distribution in age and experience. By comparing 

the stationary distributions under different pension rules we obtain the long-term effect of a 

change of pension rules. Table 7 reports the average retirement age and experience of senior 

teachers in a steady state. We use different estimates of expectation assumptions to simulate 

the retirement for these senior teachers. As expected, compared to Table 6, the averages 

over teachers in the steady state are smaller than for the 1994 cohort, and the differences 

between the counterfactual scenarios and the case with all enhancements for teachers in the 

steady state are larger. The enhancements cause teachers to retire 1.06-1.20 years earlier, 

while the effect of enhancements is only 0.36-0.50 years for the 1994 cohort. The larger 

effects are due to the simulated long-term effects when all new entrants are subject to the 

pension enhancements.

(Insert Tables 6-7 here.)
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5.2.1 Differential Financial Effects

     Pension enhancements, especially two policy changes, “25 and out” and “rule of 80”, have 

different effects on the expected pension benefit for senior teachers with similar age and 

experience. Figure 6 reports the distribution of the percentage change of expected pension 

wealth under four scenarios compared to the case of no enhancement: (i) with “25 and out” 

(without other enhancements); (ii) with “the rule of 80” (without other enhancements);

(iii) increase in the replacement rate (without other enhancements); and (iv) all of the 

enhancements. The percentage change of expected pension wealth is the ratio of pension 

wealth gains under each scenario of pension enhancements over the pension wealth with no 

enhancements.

The effects of rule “25 and out” on pension wealth of teachers with experience less than 

25 years differ by age and experience. A teacher with (age, experience) of (52, 24) would 

have to wait 3 years (until she hits (55,27)) to qualify for regular retirement without the 

“25 and out” provision; and only one year with “25 and out” for early retirement (when she 

hits (51,25)). Obviously introduction of “25 and out” expands her choice set. In contrast, 

a teacher in the cell (54, 24) would only wait one year (until she hits (55, 25)) to qualify for 

regular retirement; and introduction of the “25 and out” rule does not affect her at all.

Moreover, the “25 and out” rule expands the choice sets for teachers in the age-experience 

cells that lead to (52, 24) (i.e., (51, 23), (50, 22), etc.), but does not affect the choice set of 

cells that lead to (54,24) (i.e, (53, 23), (52, 22), etc.). The differential effects are continuous 

across the (age, experience) plane. So the cells with increased pension wealth form a small 

mountain (with the ridge along the path of (52, 24), (51, 23), (50, 22), etc.).

It’s worth noting that whether a new retirement option raises expected pension wealth 

depends on the balance of the benefit/collection-years tradeoff. By retiring earlier a teacher 

can collect pension benefits for more years; however the amount of annual benefit is lower 

than regular retirement because of the early retirement penalty. The overall effect depends 

on which side dominates. For teachers in the cells with positive pension wealth gains the 

effect of the additional collection years dominates the effect of early retirement penalty.

Introduction of the “rule of 80” broadens eligibility of regular retirement and creates pen-
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sion wealth gains along two ridges on the (age, experience) plane in Figure 6. The additional

flexibility has differential effects on the expected pension wealth of teachers in different (a, e)

cells. Per rules in Table 1, prior to enhancements, a regular retirement requires a ≥ 60, or

e ≥ 30, or a ≥ 55 and e ≥ 25. Consider the benchmark age-experience combinations on

the (a, e) plane: (60, 20), (55, 25), (50, 30). All three cells satisfy the conditions of regular

retirement in the absence of the “rule of 80”. However, cells on a straight line connecting

(60, 20) and (55, 25) (hence satisfy the “rule of 80”) do not qualify for regular retirement

without the “rule of 80”. For example, teachers with (57, 23) need to wait 2 years (to hit

(59, 25) before they qualify for regular retirement. Introduction of the “rule of 80” makes the

(57, 23)-teacher immediately eligible for regular retirement. The “rule of 80” also shortens

the years-to-eligibility of the teachers by 2 years for cells leading to (57, 23) (i.e., (56, 22),

(55, 21), (54, 20), etc.). But the rule does not change the years-to-eligibility of the teachers

for cells leading to (60, 20). This differential gains in expected pension wealth form one ridge

(the one on the left) in Figure 6.

The same scenario occurs for cells on a line connecting (55, 25) and (50, 30). Without

the “rule of 80”, teachers with (53, 27) or (52, 28) need to wait 2 years (to hit (55, 29) or

(54, 30)) before they qualify for regular retirement. Introduction of the “rule of 80” shortens

the years-to-eligibility by 2 years for these cells and for cells leading to them (i.e., (52, 26),

(51, 25), etc.; or (51, 27), (50, 26), etc.); and forms the other ridge (on the right) in Figure 6.

(Insert Figure 6 here.)

5.2.2 Estimated fiscal effects of pension enhancements

     The pension enhancements have short-run and long-run effects on teacher retirement and 

fiscal costs. The fiscal effects are evaluated in the following framework. Let the total number 

of teachers be fixed and let N(a, e, t) be the fraction of teachers with (age, experience) (a, e)

in period t, and with a given retirement rate r(a, e, t). By definition
∑
a,eN(a, e, t) = 1. Let

the present value of pension wealth for each teacher retiring at (a, e, t) be P (a, e, t). Then

total pension cost of the teachers is P̄t =
∑
a,eN(a, e, t)r(a, e, t)P (a, e, t).

Pension enhancements may result in uneven gains in pension wealth for retiring teachers
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t

with different age-experience combinations. This may alter retirement decisions for some 

teachers, resulting in changes in r(a, e, t). The change in retirement probabilities leads a 

change in the age-experience distribution in the long run. Hence pension enhancements 

affect pension cost by altering N(a, e, t), r(a, e, t), and P (a, e, t). In various parts of this 

paper we discuss how pension rules affect these components. The main focus of the paper 

is on how pension rules affect retirement probability r(a, e, t). Given retirement probability 

r(a, e, t) and current pension wealth P (a, e, t), one can compute expected pension wealth. 

Section 5.2.1 discussed the differential effects on expected pension wealth. The model in 

Appendix 2 quantifies the dynamics of the distributions N(a, e, t), given r(a, e, t).

Suppose under the new policy “∗” the attrition of cell (a, e, t) changes from the current 

r(a, e, t) to r∗(a, e, t) (and label average quantities corresponding to policy “∗” by a super-

script ∗). Then the change in pension cost in the short run is P̄∗ − P̄t; and that in the steady

state should be a constant (either positive or negative) that depends on the parameters and

the rules.

Table 8 reports pension wealth and the retirement rate for senior teachers in a steady

state, under different counterfactual scenarios. The total number of teachers is normalized to

one. The stationary distribution is the snapshot of the senior teachers aged 47-80 and with

at least 5 years of experience at the steady state. The pension cost changes are measured by

the percentage of pension wealth under different counterfactual cases compared to the case

with all of the enhancements (P̄ ∗/P̄−1). The table shows that in the long term, without “25

and out” the pension cost would be lowered by rough 2% as compared to current rules; and

without the “rule of 80” the pension cost would be lowered by a slightly lower magnitude.

Another important pension enhancement is the increase of replacement factor that raises

pension wealth for all teachers. If none of the enhancements were made from the 1994 rules,

the pension cost would be about 14% lower, i.e., the enhancements raised the steady-state

liabilities of the pension plan by roughly 16% per senior teacher. These estimates are robust

with respect to the parameters estimated under different assumptions on teacher expectations

on pension rules.

(Insert Table 8 here.)
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6 Conclusion

In this paper we examined the effect of pension rule enhancements during the 1990s on

retire-ment behavior of Missouri public school teachers. We estimated an option-value

retirement model after overcoming several statistical challenges. The resulting models exhibit

very good in-and out-of sample fit. We then used the estimated model to evaluate the effects of

1990’s pension enhancements on retirement behavior. Our simulations show that the

enhancements lead to earlier retirement of senior teachers – roughly 0.4 years for the 1994

cohort and by more than one year in a steady state. Steady state liabilities grew by roughly 16

percent per senior teacher. Since teachers already retire at ages considerably younger than

comparable professionals, many retirement plans are significantly underfunded, and

complaints of teacher shortages have become commonplace, reversing some or all of these

enhancements, or using other plan incentives to encourage longer teaching careers may be

appropriate. Sweeping rule changes such as switching from a DB plan to a defined

contribution (DC) plan may also be considered. Structural methods such as those developed

in this paper would be useful in estimating the costs and benefits of such high-stakes changes.

The methodology developed is readily extended to analysis of teacher (and non-teacher)

pensions in other states. Given the diversity of teacher pension rules (e.g., some of the

states are in Social Security, some have hybrid DB/DC plans) it is of interest to examine

whether the option-value model accurately captures retirement behavior in these systems as

well. Many states have now recognized the need to retain experienced teachers and fiscal

pressures have forced some states to implement less generous plans for new teachers. The

methods developed in this paper can be used to analyze the workforce and fiscal effects of

such changes.
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Table 1: Major Changes in PSRS Pension Rules

Academic Year Replacement Factor COLA Retirement Age and Experience
1992 0.021 0.56 Age ≥ 55 and Exp≥25, or

Age≥60 and Exp≥5, or Exp≥30
1994 0.023 0.56 same
1995 0.023 0.65 same
1996 0.023 0.65 Salary includes employer paid health insurance
1997 0.023 0.75 Add “25 and out” early retirement

(with Exp ≥25)
1999 0.025 0.75 “25 and out” formula factors increased
2000 0.025 0.75 Add “rule of 80”, Age+Exp≥80
2001 0.025 0.80 same
2002 0.0255 if Exp≥31 0.80 same

Note: If a teacher satisfies one of conditions for regular retirement rules, she may choose regular
retirement. If a teacher does not satisfy regular retirement, she may choose the rule of “25 and out”
with a reduced annuity after AY1997. COLAs in the table are the maximum annual cost of living
allowances relative to the initial annual pension benefit. Before 1995, the teacher contribution rate
was 10%. During 1996-2004, contribution was 10.5%. It was increased by 0.5% annually from
2005-2012.
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Table 2: Sample Summary Statistics

1994 cohort Number of Teachers Age Experience Male

All 1994 12871 52.15 21.48 0.26
Retirement Year
1995 674 57.04 27.15 0.34
1996 864 57.50 27.30 0.32
1997 1176 55.98 27.74 0.33
1998 1095 56.71 27.73 0.32
1999 1193 56.85 27.64 0.29
2000 1212 56.99 27.66 0.29
2001 1373 57.49 27.68 0.26
2002 1001 58.11 27.74 0.23
2003 825 58.72 27.24 0.22
2004 742 59.34 27.86 0.20
2005 687 60.10 27.17 0.19
2006 541 60.67 27.12 0.20
2007 412 61.23 27.60 0.18
2008 302 62.17 27.36 0.14
Not Retired by 2008 774 62.28 26.88 0.17

Note: The sample is Missouri PSRS public school teachers aged 47-64 with at least 5 years of
experience in the 1993-1994 school year. “All 1994” denotes the cohort of 12871 teachers in the
base year. The rows with specific retirement year present the average age and average experience of
teachers who retired in that year. The row with “Not retired by 2008” are teachers who remained
employed at the end of the sample period. Male=1 for male teachers.
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Table 3: MLE Estimates of Structural Parameters

Parameters Female Male
(M) (A1) (P1) (M) (A1) (P1)

β 0.956 0.962 0.958 0.957 0.954 0.962
(0.004) (0.004) (0.004) (0.006) (0.011) (0.006)

γ 0.656 0.708 0.634 0.615 0.666 0.701
(0.016) (0.017) (0.018) (0.029) (0.031) (0.032)

σ 2658.229 4874.581 2231.140 2543.740 4612.812 3966.185
(460.277) (863.353) (421.438) (812.413) (1509.311) (1358.974)

ρ 0.532 0.484 0.478 0.416 0.422 0.479
(0.007) (0.007) (0.007) (0.015) (0.018) (0.010)

κ 0.690 0.612 0.669 0.774 0.747 0.584
(0.019) (0.020) (0.020) (0.027) (0.037) (0.025)

κ1 0.453 1.057 0.401 0.392 1.405 0.870
(0.142) (0.145) (0.140) (0.180) (0.262) (0.229)

p 0.284 0.477
(0.034) (0.065)

log-likelihood -22130.020 -21995.200 -22175.660 -7637.431 -7526.444 -7641.678

Note: The standard errors are in parentheses. The sample includes Missouri PSRS teachers with
age 47-64 and at least 5 years of experience in 1994. The sample period is 1994-2008. The likelihood
is evaluated using the “GHK” algorithm described in the appendix. Expectation assumptions are:
myopic (M), one step perfect foresight (P1), adaptive expectation (A1).
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Table 4: Observed and Simulated Retirement Rate by Year

Retirement Year Observed (M) (A1) (P1) (M)-Obs. (A1)-Obs. (P1)-Obs.

1995 0.0524 0.0608 0.0612 0.0589 0.0084 0.0089 0.0065
1996 0.0671 0.0630 0.0639 0.0666 -0.0041 -0.0032 -0.0005
1997 0.0914 0.0750 0.0883 0.1014 -0.0164 -0.0030 0.0100
1998 0.0851 0.1062 0.0972 0.0894 0.0211 0.0121 0.0044
1999 0.0927 0.0914 0.0960 0.0951 -0.0013 0.0033 0.0024
2000 0.0942 0.0945 0.0965 0.0944 0.0003 0.0024 0.0002
2001 0.1067 0.0896 0.0876 0.0825 -0.0171 -0.0191 -0.0242
2002 0.0778 0.0768 0.0750 0.0707 -0.0010 -0.0028 -0.0071
2003 0.0641 0.0658 0.0658 0.0636 0.0017 0.0017 -0.0005
2004 0.0576 0.0567 0.0570 0.0555 -0.0009 -0.0007 -0.0021
2005 0.0534 0.0477 0.0481 0.0478 -0.0056 -0.0053 -0.0056
2006 0.0420 0.0398 0.0400 0.0403 -0.0023 -0.0020 -0.0017
2007 0.0320 0.0323 0.0322 0.0330 0.0003 0.0002 0.0010
2008 0.0235 0.0255 0.0250 0.0262 0.0020 0.0016 0.0027
Not retired 0.0601 0.0751 0.0661 0.0746 0.0150 0.0060 0.0144
MSE(10−5) - - - - 9.1078 4.7215 7.0551

Note: We use administrative data during 1994-2008 for Missouri PSRS teachers with age 47-64
and at least 5 years of experience in 1994. The observed retirement rates are the number of
retired teachers each year (column 2 in Table 2) divided by the total number of teachers (12871).
Simulated retirement rates are the number of retired teachers each year divided by the total number
of teachers. Simulations are based on the different estimates of expectation assumptions: myopic
(M), one step perfect foresight (P1), adaptive expectation (A1). The last three columns report the
residuals of predicted retirement rates (the predicted rates minus the observed ones.)

Table 5: Out-of-Sample Observed and Simulated Survival Rates

Year Observed (M) (A1) (P1) (M)-Obs. (A1)-Obs. (P1)-Obs.
2012 0.8938 0.8824 0.8865 0.8902 -0.0114 -0.0073 -0.0036
2013 0.7969 0.7918 0.7943 0.8010 -0.0051 -0.0026 0.0041
2014 0.6991 0.7063 0.7074 0.7175 0.0072 0.0083 0.0184

Note: We use administrative data during 2011-2014 for Missouri PSRS teachers with age 47-64 and
at least 5 years of experience in 2011. Simulated survival rates are based on the different estimates
of expectation assumptions: myopic (M), one step perfect foresight (P1), adaptive expectation
(A1). The last three columns report the residuals of predicted survival rates minus the observed
ones.
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Table 6: Simulated Average Retirement Age and Experience: 1994 Cohort

Avg Retirement Age Avg Retirement Experience

M Rules for the 1994 cohort 58.51 27.84
No 25 and out 58.66 (0.15) 27.99 (0.15)
No rule of 80 58.57 (0.06) 27.90 (0.06)
No Enhancements 58.87 (0.36) 28.20 (0.36)

A1 Rules for the 1994 cohort 58.35 27.68
No 25 and out 58.51 (0.16) 27.84 (0.16)
No rule of 80 58.44 (0.09) 27.77 (0.09)
No Enhancements 58.73 (0.38) 28.06 (0.38)

P1 Rules for the 1994 cohort 58.42 27.75
No 25 and out 58.64 (0.22) 27.97 (0.22)
No rule of 80 58.52 (0.10) 27.85 (0.10)
No Enhancements 58.92 (0.50) 28.25 (0.50)

Note: The simulated average retirement age and experience in different counterfactual cases are
based on the different estimates of expectation assumptions: myopic(M), one step perfect fore-
sight(P1), adaptive expectation (A1). Teachers in 1994 cohort are Missouri PSRS teachers who
are age 47-64 with at least 5 years of experience in 1994. Reported in the parenthesis are the
average simulated age and experience under counter-factual scenarios subtracting that under the
enhancements experienced by the 1994 cohort.

Table 7: Simulated Average Retirement Age and Experience: Steady State

Avg Retirement Age Avg Retirement Exp

M With All Enhancements 57.00 25.04
No 25 and out 57.55 (0.55) 25.59 (0.55)
No rule of 80 57.14 (0.14) 25.18 (0.14)
No Enhancements 58.19 (1.19) 26.23 (1.19)

A1 With All Enhancements 57.11 25.16
No 25 and out 57.56 (0.45) 25.61 (0.45)
No rule of 80 57.30 (0.19) 25.35 (0.19)
No Enhancements 58.17 (1.06) 26.22 (1.06)

P1 With All Enhancements 57.28 25.32
No 25 and out 57.81 (0.53) 25.85 (0.53)
No rule of 80 57.46 (0.18) 25.50 (0.18)
No Enhancements 58.48 (1.20) 26.52 (1.20)

Note: The simulated average retirement age and experience in different counterfactual cases are
based on the different estimates of expectation assumptions, including myopic (M), one step perfect
foresight (P1), adaptive expectation (A1). Reported in the parenthesis are the average simulated
age and experience under counter-factual scenarios subtracting that under the case of all enhance-
ments.
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Table 8: Pension Wealth and Retirement Rate Under Counterfactual Scenarios: Steady State

Effect on Pension Wealth Retirement rate

M With All Enhancements - 0.0895
No 25 and out -2.45% 0.0852
No rule of 80 -1.76% 0.0883
No Enhancements -14.56% 0.0808

A1 With All Enhancements - 0.0885
No 25 and out -1.84% 0.0851
No rule of 80 -1.91% 0.0871
No Enhancements -13.84% 0.0809

P1 With All Enhancements - 0.0872
No 25 and out -1.97% 0.0834
No rule of 80 -1.87% 0.0859
No Enhancements -14.06% 0.0789

Note: The total number of teachers is normalized to one. The stationary distribution is the
distribution of teachers over the cells of age 47-80 and experience of least 5 years at the steady
state. Effect on Pension Cost is the percentage of pension cost reduction under counterfactual cases
from the pension cost with all enhancements. The calculation in different counterfactual cases are
based on the different estimates of expectation assumptions, including myopic (M), one step perfect
foresight (P1), adaptive expectation (A1).
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Figure 1: Age/Experience Distribution of the Initial Sample

Note: The initial sample of the 1994 cohort are 12871 Missouri PSRS teachers who with age 47-64
and at least 5 years of experience in 1994.
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Figure 2: Age-Experience Distribution of the Initial Sample

Note: The initial sample of the 1994 cohort are 12871 Missouri PSRS teachers with age 47-64 and
at least 5 years of experience in 1994.
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Figure 3: Observed and Simulated Survival Rates

Note: Observed survival rate is based on the administrative data during 1994-2008 for Missouri 
PSRS teachers with age 47-64 and at least 5 years of experience in 1994. Simulated survival rates are 
based on the different estimates of expectation assumptions, including myopic (M), one step perfect 
foresight (P1), adaptive expectation (A1).
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Figure 4: Observed and Simulated Joint Age-Experience Distributions for Retired Teachers

Note: Observed age-experience distribution is based on all teachers of the 1994 cohort at the time
of retirement. Simulated age-experience distributions are based on the different estimates of expec-
tation assumptions, including myopic (M), one step perfect foresight (P1), adaptive expectation
(A1).
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Figure 5: Observed and Predicted Survival Rates With and Without Selection Bias Correc-
tion

Note: Observed survival rate is based on the administrative data during 1994-2008 for Missouri
PSRS teachers with age 47-64 and at least 5 years of experience in 1994. Simulated survival rate
labeled “adjusting” is based on the estimated parameters from adaptive expectation (A1) and
adjusted for the sample selection bias. Simulated survival rate “Non-adjusting” is based on the
same estimated parameters but without adjusting for the sample selection bias.
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Figure 6: Distribution of Percentage Change of Pension Wealth

Note: The percentage change of expected pension wealth in each case of pension enhancement is
the fraction of pension wealth gain over that with no enhancement of cases 1 to 3. Case 1: adding
the rule “25 and out”; Case 2: adding the “rule of 80”; Case 3: adding the increase of replacement
factor; Case 4: adding all enhancements of Cases 1-3.
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Appendix

Appendix 1. Algorithms for Computing Likelihood

Denote the normal N(m,σ2) truncated at (a, b) as TN(a,b)(m,σ
2). For all t, f+

t is defined in

(8).

Algorithm1(t1, t2) computes the probability of retirement in t2 for a teacher with the first

eligible year t1:

1. Starting in period t1, obtain K νt1s that satisfy νt1 > −f+
t1 by drawing from the left

truncated TN(−f+
t1
,∞)(0,

σ2

1−ρ2 ). This is equivalent to drawing ε
(k)
t1 from TN

(−f+
t1

√
1−ρ2,∞)

(0, σ2),

k = 1, .., K.

2. For t1 < t < t2, conditional on ν
(k)
t−1 (or ε

(k)
t1 , .., ε

(k)
t−1) draw ε

(k)
t from

TN
(−f+

t −ρν
(k)
t−1,∞)

(0, σ2), which implies ν
(k)
t = ρν

(k)
t−1 + ε

(k)
t > −f+

t ,

3. In period t2 conditional on ν
(k)
t2−1 draw ε

(k)
t2 from TN

(−∞,−f+
t2
−ρν(k)

t2−1)
(0, σ2), which implies

f+
t2 < −ν

(k)
t2 = −ρν(k)

t2−1 − ε
(k)
t2 .

The preference error in period t, νt = ρtν0 + ρt−1ε1 + ... + ρεt−1 + εt, is conditional on

the initial error ν−J and the shocks εj (1 ≤ j ≤ t) drawn from the truncated conditional

distributions.

prob(G−J,n) =
n−1∏

t=−J+1

prob((ρνt−1 + εt > −f+
t )|νt−1)× prob((ρνn−1 + εn ≤ −f+

n )|νn−1)

=
n−1∏

t=−J+1

Φ(
f+
t + ρνt−1

σ
)Φ(−f

+
n + ρνn−1

σ
),

where Φ(.) is the cdf of the standard normal. The probability can be computed using the K

simulated sequences of ν’s as

G−J,n ≈
1

K

K∑
k=1

[
n−1∏

t=−J+1

Φ(
f+
t + ρν

(k)
t−1

σ
)]Φ(−f

+
n + ρν

(k)
n−1

σ
). (14)

Note that Algorithm1 does not produce unbiased draws of ν0.

Algorithm2(t1, t2)
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Take the first 2 steps of Algorithm1(t1, t2). Step 1 is the same. In Step 2 replace t1 <

t < t2 by t1 < t ≤ t2, and use

Step 2’. For t1 < t ≤ t2, conditional on ν
(k)
t−1 (or ε

(k)
t1 , .., ε

(k)
t−1) draw ε

(k)
t from

TN
(−f+

t −ρν
(k)
t−1,∞)

(0, σ2).

The probability of staying teaching in period t is prob((ρνt−1 + εt > −f+
t )|νt−1) = 1 −

Φ(
−f+

t −ρνt−1

σ
) = Φ(

f+
t +ρνt−1

σ
). The retirement probability conditional on being observed in

the sample is

prob(ννν−J,0 > −fff+−J,0) =
0∏

t=−J+1

prob((ρνt−1 + εt > −f+
t )|νt−1)

= [
0∏

t=−J
Φ(
f+
t + ρνt−1

σ
)].

The probability can be computed using the K simulated sequences of ν’s as

prob(ννν−J,0 > −fff+−J,0) ≈ 1

K

K∑
k=1

[
0∏

t=−J+1

Φ(
f+
t + ρν

(k)
t−1

σ
)]. (15)

Appendix 2. Pension Rules and the Dynamics of the Distributions

of Senior Teachers

The appendix explores the dynamic effects on the distribution of senior teachers by pension

rule changes that lead to changes in attrition rates for certain age-experience cells.

The assumptions are:

1. The total number of senior teachers is fixed. Without losing generality, we let the

fixed number be 1.

2. All senior teachers teach without interruption prior to leaving.

3. Let N(a, e, t) be the fraction (or the number) of teachers with (age, experience) (a, e)

in period t, and with a given attrition rate r(a, e, t). We assume a ≥ al (al is a minimum

age, 47 for the sample in the study). Let a0 be the youngest age to be a novice teacher (say

22).

4. The attrition is 1 if age hits an upper limit a = ah (ah is set at 80 in the policy

42



simulations.)

5. The minimum experience in the sample is el (el = 5 for the sample used in the study),

el ≤ e ≤ a− a0. The last inequality says that a teacher’s experience e can not exceed a− a0

because her starting age of teaching can not be lower than a0.

6. When attrition occurs in period t, they are replaced by either teachers with of age a

minimum experience el, of size N(a, el, t + 1), or teachers with experience e and minimum

age al in the sample, of size N(al, e, t + 1). The new senior entrants work for at least one

year. The age distribution of the minimum experience or minimum age teachers is given by

N(a,el,t)
N(al,el,t)

= f(a), for a = al, .., ah − 1; and N(al,e,t)
N(al,el,t)

= h(e) for el + 1 ≤ e ≤ al − a0. Denote∑ah−1
a=al f(a) = a∗,

∑al−a0

e=el+1 h(e) = e∗. We count the (al, el) cell in f(a) but not in h(e), without

losing generality.

With this notion, the attrition of teachers of age a = ah and experience e in

period t is
∑ah−a0

e=el N(ah, e, t). The attrition of the new senior entrant teachers is∑ah−1
a=al N(a, el, t)r(a, el, t) +

∑al−a0

e=el+1 N(al, e, t)r(al, e, t). The total attrition in period t is

given by

s(t) =
ah∑

a=al+1

a−a0∑
e=el+1

N(a− 1, e− 1, t)r(a− 1, e− 1, t) +
ah−a0∑
e=el

N(ah, e, t)

+
ah−1∑
a=al

N(a, el, t)r(a, el, t) +
al−a0∑
e=el+1

N(al, e, t)r(al, e, t).

By assumption 1, the vacancies due to retirements are filled in the next period by new

senior entrant teachers of size s(t). The size of replacement teachers in period t+1 with mini-

mum experience el is
∑ah−1
a=al N(a, el, t+1) =

∑ah−1
a=al f(a)N(al, el, t+1). The replacement teach-

ers in period t+1 with minimum age al is
∑ah−a0−1
e=el+1 N(a, el, t+1) =

∑al−a0

e=el+1 h(e)N(al, el, t+1).

Hence N(al, el, t + 1) = s(t)
a∗+e∗

. The age-specific size of minimum-experience new en-

trant teachers of the next period is N(a, el, t + 1) = f(a)N(al, el, t + 1) = s(t)f(a)
a∗+e∗

, and

experience-specific size of minimum-experience new entrant teachers of the next period is

N(al, e, t+ 1) = h(e)N(al, el, t+ 1) = s(t)h(e)
a∗+e∗

(for el + 1 ≤ e ≤ al − a0.)

Pension rules affect attrition rates r(a, e, t). Structural models such as the Stock-Wise
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option-value model or a dynamic programming model dictate how r(a, e, t) changes with

change in rules. The short-run effect of a pension rule change on the distribution of the

teaching force workforce can be computed using the formula above. In a steady state all

functions N, r are time-independent. The long-run effect concerns the stationary distribution

of teachers (if it exists).

Let the attrition rate by time-independent: r(a, e, t) = r(a, e), (a = al, .., ah, el ≤ e ≤

a−a0). Then the size of the (a, e) cell in period t can be traced back using (1) to a cell with

minimum age or minimum experience.

Denote www0(al, t) =


N(al, el + 1, t)

...

N(al, al − a0, t)

 .
Then denote www(e, t) as the vector teacher shares with experience e of stacked up by age.

The dimension varies by the level of experience.

www(el, t) =



N(al, el, t)

N(al + 1, el, t)
...

N(ah − 1, el, t)

, www(el + 1, t) =



N(al, el + 1, t)

N(al + 1, el + 1, t)
...

N(ah, el + 1, t)

,...,

www(ah − a0 − 1, t) =

N(ah − 1, ah − a0 − 1, t)

N(ah, ah − a0 − 1, t)

, www(ah − a0, t) = N(ah, ah − a0, t).

Let xxxt as the vector of stacked up shares of teachers by age and experience. The vector

xxxt represents the distribution of teachers in period t.

xxxt =



www0(al, t)

www(el, t)

www(el + 1, t)
...

www(ah − al, t)


.

By definition the sum of all elements of xxxt is unity.

Denote the vector of attrition rate of xxxt−1 as rrrt−1. By definition, the element of rrrt−1

corresponding to N(a, e, t − 1) is r(a, e, t − 1). The attrition in year t − 1 is rrr(t − 1)′xxxt−1.
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Denote the vector that weighs the cells of the new-entrant teachers as vvv =



h(el+1)
a∗+e∗

...

h(al−a0)
a∗+e∗

f(al)
a∗+e∗

...

f(ah−1)
a∗+e∗


.

One can write the vector of the new senior entrant teachers as

www0(al, t)

www(el, t)

 = vvvrrr(t− 1)′xxxt−1.

The number of non-entrant teachers from the remaining teachers in the cell (a− 1, e− 1)

is N(a, e, t) = (1− r(a− 1, e− 1, t− 1))N(a− 1, e− 1, t− 1). We write


www(el + 1, t)

...

www(ah − a0, t)

 =

BBB(t − 1)xxxt−1, where the elements of the row of BBB(t − 1) corresponding to N(a, e, t) are all

0’s, except for the single element that corresponds to N(a − 1, e − 1, t − 1), which equals

1− r(a− 1, e− 1, t− 1).

The sum of the vector 1′vvv=
∑ah−1

a=al
f(a)

a∗+e∗
+

∑ah−a0−1

e=el+1
h(e)

a∗+e∗ = 1. It follows that the sum of the

column of matrix vvvrrr(t − 1)′ corresponding to element N(a − 1, e − 1, t − 1) (whose age is

below ah) in xxxt−1 is r(a− 1, e− 1, t− 1), and 1 otherwise.

Putting these components together, the dynamics of the attrition and replacement can

be summarized by the following relationship

xxxt = AAAt−1xxxt−1,

with the transition matrix

AAAt−1 =

 vvvrrr(t− 1)′

BBB(t− 1)

 .
In period t, all elements of AAAt is nonnegative and each column of AAAt sums to unity.

The short-run and long-run effect of pension rules change
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A change in pension rules in period t− 1 changes attrition rates r(a, e, t− 1). The short-

run effect depends on the changes in the attrition rates and the initial distribution xxx0. The

time t distribution is given by xxxt = (
∏t−1
i=0 AAAi)xxx0.

A once-and-for-all policy change in period 0 with initial distribution xxx0 is

xxxt = AAAtxxx0,

where AAA is the transition matrix corresponding to the new policy. In the following, we will

show that the initial distribution no longer matters in the long-run, and the effect of change

in the pension rules is captured by the shift in the stationary distribution of teachers.

The stationary distribution of teachers is a vector of fixed share for each (age,experience)

cell N(a, e), with
∑ah

a=al
∑a−a0

e=el N(a, e) = 1 and a constant total attrition in each period.

Facts:

(a). The stationary distribution is uniquely determined by the attrition r(a, e) and the

relative share of new entrant teachers f(a) and h(e).

(b). Starting from an arbitrary distribution N(a, e, 0) (a = al, .., ah, el ≤ e ≤ a − al),

N(a, e, T )→ N(a, e) as T →∞.

For part (a), note the system with constant attrition rates can be written as xxxt = AAAxxxt−1.

One can treat AAA as the transition matrix for a Markov Chain, and vector xxxt as the probability

distribution over states of teachers’ age and experience. Because (i) attrition is less than

unity prior to the maximum age, (ii) any age-experience cell eventually leads to retirement,

and (iii) the replacement age distribution assigns a positive share to each age at the minimum

experience, all states are positive recurrent and the chain is irreducible. Hence there is a

unique stationary distribution.

For part (b), it is known that because the sum of each column of elements of the tran-

sition AAA equals 1, unity is an eigenvalue of AAA and other eigenvalues of AAA are less than

unity. Consider the spectral decomposition AAA = VVVDDDVVV−1, where diagonal matrix DDD are the

eigenvalues of AAA. Let xxx0 be the vectorized distribution N(a, e, 0), since all elements of the

diagonal matrix DDD is less or equal to 1, xxxt+1 − xxxt = VVV(DDDt+1 −DDDt)VVV−1xxx0 → 0 for any xxx0.
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