

Math Acceleration in Elementary School: Access and Effects on Student Outcomes

Steven W. Hemelt University of North Carolina at Chapel Hill/CALDER

> Matthew A. Lenard Wake County Public School System

B. Aspacia Stafford University of North Carolina at Chapel Hill

Math Matters!

Math is a core component of students' learning

- Math competence associated with national competitiveness
- More math in high school boosts later outcomes (educational and employment)

More Math – How? For whom?

- Early math \rightarrow later math:
 - Early exposure to Algebra (in 8th or 9th grade)
 Mixed findings
 - Universal versus targeted approaches to acceleration
 - Targeted acceleration in math for middle school students in Wake County
- Causal effects of early math acceleration on educational outcomes

Test-based approach began in spring of 2014 in WCPSS

Acceleration process:

2013-14

2nd grader is nominated by teacher or parent for math acceleration; takes test in spring of 2014

Student is in 3^{rd} grade:

2014-15

- If qualifying exam score >= 80%, then she takes 4th grade math
- If score < 80%, she takes 3rd grade math

Student is in 4th grade and continues on accelerated math track (unless removed by parent)

2015-16

Research Questions

- Are there gaps in nomination likelihood by gender, race, or ethnicity, conditional on measures of prior achievement?
- 2) What is the effect of acceleration in math during elementary school on...
 - Math, reading, and science performance
 - Non-test-score measures of effort, engagement, and plans
 - Corse-taking outcomes at start of middle school (6th grade)

- Administrative data from Wake County Public School System (WCPSS) from 2013-14 to 2016-17
- Starting analytic sample:

3rd and 4th graders

- Available measures of baseline achievement
- Observable shortrun achievement outcomes (M + R)

D

Descriptive Statistics

Variable	All 3 rd & 4 th Graders	Nominees	Qualifiers
<u>Demographics</u>			
Female	0.50	0.39	0.35
White, NH	0.48	0.51	0.46
Black, NH	0.22	0.05	0.02
Asian, NH	0.08	0.37	0.46
Hispanic	0.18	0.03	0.01
LEP	0.14	0.09	0.07
Special education	0.11	0.03	0.02
Baseline Achievement		80-85th pctile	e of WCPSS distribut
Math EOG Score, std	0.009 (0.98)	1.12 (0.54)	1.51 (0.37)
Reading EOG Score, std	0.001 (0.99)	0.87 (0.60)	1.17 (0.47)
Accelerated	0.004	0.14	0.56
N(students)	70,773	1,792	416

Nomination

Sample = 3rd & 4th graders, all cohorts; N = 70,773 students

Qualification

Sample = 3rd & 4th grade nominees, all cohorts; N = 1,792 students

Effects of Math Acceleration on Educational Outcomes

Regression discontinuity (RD)

RD Assumptions Met?

Inability of students to precisely manipulate measure that determines treatment

RD Assumptions Met?

Similarity of observations on each side of cutoff → only remaining difference is treatment itself

▶ 3rd and 4th graders, pooled

Qualification \rightarrow Acceleration

Separate 3rd and 4th grade samples

"Treatment" differs

- 3rd grader who
 accelerates walks
 down hall to
 participate in 5th
 grade math during
 4th grade
- 4th grader who accelerates takes online 6th-grade math while in 5th grade

Short-Run Achievement

 Accelerated students take EOG based on current grade level of enrollment (not material) → complicates interpretation of effects on math scores

Short-Run Achievement: Spillovers?

Non-test-score Outcomes

- Analytic sample = 4th grade nominees
- Little clear effect of math acceleration on...
 - Grit scale
 - Nominee avg = -0.27 std; Qualifier avg = -0.24 std
 - Control and relevance of schoolwork (CRSW) index
 "When I do well in school it's because I work hard."
 - Future goals (FG) and aspirations index
 - "I plan to continue my education following high school."

Transition to Middle School

- Q: What share of 4th graders initially accelerated in 5th grade remained on accelerated track at start of middle school?
 - 86% of initial accelerators ("compliers") did so
 - Males = 95%
 - Females = 64%

- Mostly little effect of targeted math acceleration for elementary school students on measures of short-run achievement
- Some evidence of positive spillovers on short-run reading performance:
 - Only for 4th graders who took online 6th-grade math as 5th graders
 - Suggests that mode (and content) of acceleration may shape achievement effects
- Persistence in advanced math at start of middle school
 - Overall rate = 86%
 - Male-female gap = 31 ppts

Next Steps

- ▶ Add additional cohort of 3rd/4th graders
- Effects on 6th grade math course grades?
- Use measures of peer/classroom characteristics to further characterize treatment-control contrast experienced by accelerated students
- More discussions with math specialists in elementary and middle schools across Wake County

Thanks!

Appendix: Citations for Motivation

- Math competence associated with national competitiveness
 - Hanushek & Woessmann (2012); Hanushek, Peterson, & Woessmann (2010); Hanushek & Kimko (2000)
- Increases in math course-taking (largely in high school) → boosts in downstream educational and employment outcomes
 - Long, Conger & latarola (2012); Cortes, Goodman, & Nomi (2015); Goodman (2012); Clotfelter, Hemelt, & Ladd (2018); Joensen & Nielsen (2009); Rose & Betts (2004)

Appendix: Details on Recent Math Acceleration Study

- Recent evidence from WCPSS focuses on targeted acceleration in math during middle school that began in 2010-11 (Dougherty et al., 2017):
 - Marginal student sits around the 20th percentile of district-wide achievement distribution
 - Focuses on 7th graders
 - No effects on short-run test scores
 - Moderate increase in share of middle-schoolers taking precalculus by 11th grade
 - Boost in share who want to attend college

Appendix: Citations for Non-Test-Score Outcomes

WCPSS Student Engagement Survey dimensions:

- Short Grit scale
 - Duckworth & Quinn (2009)
- Control and relevance of schoolwork (CRSW)
- Future goals and aspirations (FG)
 - Appleton, Christenson, Kim, & Reschly (2006)