Math Acceleration in Elementary School: Access and Effects on Student Outcomes

Steven W. Hemelt
University of North Carolina at Chapel Hill/CALDER
Matthew A. Lenard
Wake County Public School System
B. Aspacia Stafford
University of North Carolina at Chapel Hill

Math Matters!

- Math is a core component of students' learning
- Math competence associated with national competitiveness
- More math in high school boosts later outcomes (educational and employment)

More Math - How? For whom?

- Early math \rightarrow later math:
- Early exposure to Algebra (in $8^{\text {th }}$ or $9^{\text {th }}$ grade)
- Mixed findings
- Universal versus targeted approaches to acceleration
- Targeted acceleration in math for middle school students in Wake County
- Causal effects of early math acceleration on educational outcomes

Elementary School Math Acceleration

- Test-based approach began in spring of 2014 in WCPSS
- Acceleration process:

$$
\underline{2013-14} \longrightarrow \underline{2014-15} \longrightarrow \underline{2015-16}
$$

$2^{\text {nd }}$ grader is nominated by teacher or parent for math acceleration; takes test in spring of 2014

Student is in $3^{\text {rd }}$ grade:

- If qualifying exam score $>=80 \%$, then she takes $4^{\text {th }}$ grade math
- If score $<80 \%$, she takes $3^{\text {rd }}$ grade math

Student is in $4^{\text {th }}$ grade and continues on accelerated math track (unless removed by parent)

Research Questions

I) Are there gaps in nomination likelihood by gender, race, or ethnicity, conditional on measures of prior achievement?
2) What is the effect of acceleration in math during elementary school on...

- Math, reading, and science performance
- Non-test-score measures of effort, engagement, and plans
- Corse-taking outcomes at start of middle school ($6^{\text {th }}$ grade)

Data and Analytic Samples

- Administrative data from Wake County Public School System (WCPSS) from 2013-14 to 2016-17
- Starting analytic sample:

Descriptive Statistics

Nomination

Qualification

Sample $=3^{\text {rd }} \& 4^{\text {th }}$ grade nominees, all cohorts; $\mathrm{N}=\mathrm{I}, 792$ students

Effects of Math Acceleration on Educational Outcomes

RD Assumptions Met?

- Inability of students to precisely manipulate measure that determines treatment

RD Assumptions Met?

- Similarity of observations on each side of cutoff \rightarrow only remaining difference is treatment itself

Qualification \rightarrow Acceleration

- $3^{\text {rd }}$ and $4^{\text {th }}$ graders, pooled

Qualification \rightarrow Acceleration

- Separate $3^{\text {rd }}$ and $4^{\text {th }}$ grade samples

"Treatment" differs
- $3^{\text {rd }}$ grader who accelerates walks down hall to participate in $5^{\text {th }}$ grade math during $4^{\text {th }}$ grade
- $4^{\text {th }}$ grader who accelerates takes online $6^{\text {th }}$-grade math while in $5^{\text {th }}$ grade

Short-Run Achievement

- Accelerated students take EOG based on current grade level of enrollment (not material) \rightarrow complicates interpretation of effects on math scores

Short-Run Achievement: Spillovers?

Effect of math acceleration on subsequent reading performance? (Fuzzy RD, IV estimates)
$3{ }^{\text {rd }}$ Grade Sample
-0.036
(0.079)
$4^{\text {th }}$ Grade Sample 0.185* (0.097)

~19\% improvement over control-side outcome mean

Non-test-score Outcomes

- Analytic sample $=4^{\text {th }}$ grade nominees
- Little clear effect of math acceleration on...
- Grit scale
- Nominee avg $=-0.27$ std; Qualifier avg $=-0.24$ std
- Control and relevance of schoolwork (CRSW) index
" "When I do well in school it's because I work hard."
- Future goals (FG) and aspirations index
" "I plan to continue my education following high school."

Transition to Middle School

Q: What share of $4^{\text {th }}$ graders initially accelerated in $5^{\text {th }}$ grade remained on accelerated track at start of middle school?

- 86% of initial accelerators ("compliers") did so
- Males = 95\%
- Females = 64\%

Emerging Story

- Mostly little effect of targeted math acceleration for elementary school students on measures of short-run achievement
- Some evidence of positive spillovers on short-run reading performance:
- Only for $4^{\text {th }}$ graders who took online $6^{\text {th }}$-grade math as $5^{\text {th }}$ graders
- Suggests that mode (and content) of acceleration may shape achievement effects
- Persistence in advanced math at start of middle school
- Overall rate $=86 \%$
- Male-female gap $=31$ ppts

Next Steps

- Add additional cohort of $3^{\text {rd }} / 4^{\text {th }}$ graders
- Effects on $6^{\text {th }}$ grade math course grades?
- Use measures of peer/classroom characteristics to further characterize treatment-control contrast experienced by accelerated students
- More discussions with math specialists in elementary and middle schools across Wake County

04
Thanks!

Appendix: Citations for Motivation

- Math competence associated with national competitiveness
b Hanushek \&Woessmann (20I2); Hanushek, Peterson, \& Woessmann (20I0); Hanushek \& Kimko (2000)
- Increases in math course-taking (largely in high school) \rightarrow boosts in downstream educational and employment outcomes
- Long, Conger \& latarola (2012); Cortes, Goodman, \& Nomi (2015); Goodman (2012); Clotfelter, Hemelt, \& Ladd (20I8); Joensen \& Nielsen (2009); Rose \& Betts (2004)

Appendix: Details on Recent Math Acceleration Study

- Recent evidence from WCPSS focuses on targeted acceleration in math during middle school that began in 2010-II (Dougherty et al., 2017):
- Marginal student sits around the $20^{\text {th }}$ percentile of district-wide achievement distribution
- Focuses on $7^{\text {th }}$ graders
- No effects on short-run test scores
- Moderate increase in share of middle-schoolers taking precalculus by II ${ }^{\text {th }}$ grade
- Boost in share who want to attend college

Appendix: Citations for Non-Test-Score Outcomes

- WCPSS Student Engagement Survey dimensions:
- Short Grit scale
- Duckworth \& Quinn (2009)
- Control and relevance of schoolwork (CRSW)
- Future goals and aspirations (FG)
- Appleton, Christenson, Kim, \& Reschly (2006)

