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Abstract 
 

A critical element in the sustainability of any public policy is the fair treatment of ‘similar’ individuals. This 

paper introduces a new dimension of merit to evaluate public school assignment mechanisms based on this 

notion of horizontal equity. The findings reveal that all of the prominent assignment mechanisms discussed 

in the literature fail to satisfy this ‘equal treatment’ criterion. I also show that there exists no student-optimal 

stable mechanism that also satisfies equal treatment, illustrating the tradeoff between constrained efficiency 

and horizontal equity. These findings surface a serious cause for concern about the public school assignment 

procedures used in major school districts.   
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1. Introduction 

Public school choice programs remain to be popular, and highly controversial, tools in education 

policy to improve student achievement in urban school districts. Such programs extend the traditional 

Tiebout choice, under which residential choice implies school choice, by providing various alternatives to 

the household’s neighborhood school. These alternatives include other traditional public schools (open 

enrollment programs such as intra-district and inter-district choice which make out-of-boundary 

traditional public schools available to nonresidents) or untraditional publicly funded schools (charter and 

magnet schools). As of 2011, 25 states had passed legislation mandating school districts to implement 

intra-district school choice, and 22 states had mandated the school districts within their boundaries to 

participate in the inter-district choice program of the state (ECS, 2011). During the last decade, the 

number of students enrolled in public charter schools more than quadrupled from 300,000 students to 

1.6 million students, 3.3 percent of all public school students nationwide. As of 2010, 40 states and the 

District of Columbia had enacted a charter school law (NCES, 2012). 

Absent frictions, public school choice programs allow parents to send their children to any 

public school within the boundaries of a region that contains, but is not limited to, the household’s 

neighborhood. In this scenario, public school assignments are trivial; each student is assigned to the 

public school of her choice within these boundaries. However, in practice, parents are typically limited in 

their public school choices by non-boundary constraints, especially public school capacities, requiring 

admission procedures with established rules to determine the assignments at over-demanded schools. 

In smaller local education agencies (e.g. suburban school districts and charter schools), these procedures 

are decentralized (i.e. school specific). That is, each student submits a separate application to each 

school she wishes to attend. In cases where the number of applicants exceeds the number of seats 

available, priority categories are used to increase the likelihood of admission for certain subgroups of 

applicants (e.g. residing in the attendance zone of the school, sibling of a current student). To provide 
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equal probability of admission to the applicants in the same priority categories, a random lottery is 

conducted to break the possible ties.  

In large urban school districts, on the other hand, centralized assignment procedures present 

significant efficiency gains when public schooling options available to students are abundant. 

Consequently, many major school districts (e.g. Boston, New York City) have replaced school-specific 

assignment procedures with centralized assignment systems over the last two decades. In centralized 

systems, students first submit a list of their public school preferences to the school district. Similar to 

decentralized procedures, applicants are then ranked at each school based on their priority category and 

the outcome of a single random lottery to preserve the equivalency of applicants with the same 

priorities. Given these submitted preferences and strict priority rankings, assignments are decided with 

the use of assignment mechanisms. These assignment mechanisms have so far been evaluated in the 

economics literature along three major dimensions: 

1. Strategy-proofness: A preferred public school assignment mechanism avoids creating incentives 

for students to play complicated games. Hence, truthful ranking of schools for all students 

should be a dominant strategy.  

2. Stability: An assignment set is defined to be stable if there is no school-student pair (i,s) such 

that student i prefers school s to her current assignment and either school s prefers student i to 

at least one of the students assigned to it or school s has at least one empty seat. Absent 

stability, there exists ‘justified envy’ in the assignments, providing incentives for parents to seek 

legal action to overturn assignment decisions. 

3. Efficiency: For the public school assignment problem in the context of this paper, only the 

welfare of students is considered for Pareto efficiency, since schools are regarded as objects to 
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be consumed by students.1 Previous literature has shown that there exists no assignment 

mechanism that yields stable assignments that are also Pareto efficient for any public school 

assignment problem. 2 However, Erdil and Ergin (2008) has shown that constrained efficiency 

(the Pareto efficient assignments among the set of stable assignments, also known as the 

student-optimal stable assignments) is achievable. 

One of the most commonly used student assignment mechanisms is the Boston mechanism, so 

named because of its use until recently in Boston. This mechanism is still being used in other major 

school districts including Cambridge (MA), Charlotte (NC), Denver (CO), District of Columbia, 

Hillsborough (Tampa, FL), Miami-Dade (FL), Minneapolis (MN), Seattle (WA) and Pinellas (St.Petersburg, 

FL). Despite its common use, ironically, the previous literature has shown that the Boston mechanism 

fails to satisfy all of the aforementioned properties of a ‘well-behaving’ assignment mechanism in 

practice.1 In the light of these findings, three alternatives have so far been proposed to replace the 

Boston mechanism: the Gale-Shapley deferred acceptance (GS-DA) mechanism, which, in fact, replaced 

the Boston mechanism in Boston Public Schools in 2006, the top-trading cycles (TTC) mechanism, and 

the stable improvement cycles (SIC) mechanism.3  

A critical element in the sustainability of any public policy is the fair treatment of ‘similar’ 

individuals. This paper introduces a new dimension of merit to evaluate public school assignment 

mechanisms based on this notion of horizontal equity, which, in public school assignment context, 

seems to require that students with the same public school preferences and in public schools’ same 

priority categories must be treated equally. In the presence of binding public school capacity constraints, 

                                                 
1
 For the public school assignment problem discussed in this paper, priority categories mandated by school districts 

are employed along with student preferences to determine public school assignments. Since these rankings do not 

necessarily correspond to schools’ preferences, only students’ preferences are considered for efficiency. On the 

contrary, there are cases such as the high school assignments in NYC where schools determine their own priority 

rankings. In that case, school preferences as well as student preferences might be taken into account for welfare 

considerations. 
2
 See Abdulkadiroglu and Sonmez (2003) for an example that presents an illustration of this conflict. Erdil (2002) 

presents the conditions under which stability does not conflict with Pareto efficiency. 
3
 See Abdulkadiroglu and Sonmez (2003) and Erdil and Ergin (2008). 
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a weaker application would require that if two students who are in the same priority category for a 

given school have the identical preference ranking of schools with that school as their first choices, the 

assignment mechanism imply an equal probability of assignment to the ‘school of interest’. Generalizing 

this weak application of horizontal equity, this paper presents a new criterion, which I refer to as equal 

treatment, to evaluate public school assignment mechanisms. 

Evaluating the prominent assignment mechanisms discussed in the recent literature along this 

new dimension, findings reveal that the Boston mechanism and the alternatives proposed as 

replacements fail to satisfy the equal treatment criterion. I also show that there exists no student-

optimal stable mechanism that satisfies the equal treatment criterion, illustrating the tradeoff between 

horizontal equity and constrained efficiency in public school assignment context. These findings suggest 

that the efficiencies created by the centralized assignment procedures as they are currently 

implemented in many school districts come with the burden of arbitrary distinctions between equivalent 

students, contradicting the primary purposes of priority categories and providing students incentives to 

seek legal action to overturn their assignments. While these findings reveal a serious cause for concern, 

subsequent sections of this paper indicate that, under certain procedural changes, it is possible for 

urban school districts to use centralized assignment systems without facing possible legal challenges.  

 

2. Public School Assignment Problem and Equal Treatment 

In a public school assignment problem, there are n students (i1, i2,…, in) and k public schools (s1, 

s2,…, sk) each of which has a certain number of seats available (c1, c2,…, ck). Public school assignments 

depend on students’ reported preferences, schools’ priorities over students, and the assignment 

mechanism. Each student has a utility function over the k public schools  kjniU j

i ,...,1;,...,1;   with 

strict preferences. Students first submit their preferences, i.e., a strict ranking of the public schools. 

Public school assignments are then determined based on the set of submitted (ordinal) rankings. Schools 
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have priority rankings of students, based on broad priority categories mandated by the school district 

(e.g., residing in a walk zone).4 The ties between students in the same priority categories are broken 

using a single, equal-probability random lottery, which is intended to preserve the ex-ante equivalence 

of such students, before the assignment algorithm can be applied.5  

In this study, I analyze the case where each student acts strategically and plays best response to 

other students before submitting school preferences, noting that the main results presented in the 

following sections extend to the more realistic case where the student body consists of strategic 

(sophisticated or informed) students and sincere (unsophisticated or uninformed) students who always 

reveal their true school preferences truthfully. In what follows, it is assumed that these games of school 

choice take place under the informational setting where players (students) know the rules of the game 

(i.e. school capacities, the rules of the assignment mechanism, and pre-lottery school priority rankings 

over students), the types of other players (i.e. other students’ true preferences over schools), yet do not 

necessarily know the payoffs resulting from their actions with certainty due to the timing of the random 

lottery.6 Instead, students know the possible assignments and the assignment probabilities associated 

with their best responses. In other words, games of school choice take place under uncertainty whereby 

students, given the revealed preferences of others, choose the strategy (public school ranking) that 

yields the highest expected utility among different possible rankings of public schools, some of which, if 

                                                 
4
 For instance, in Boston, the following priority categories are used: (1) Students who have siblings currently 

attending that school and who live in the ‘walk zone’ of the school; (2) Students who have siblings currently 

attending that school; (3) Students who live in the ‘walk zone’ of the school; (4) Students who do not fall into the 

three categories above. Furthermore, each applicant is assigned a random number, which is used to break the ties 

between students in the same priority categories when necessary. 
5
 School districts differ in the ways they use priority categories along with the lottery outcome to rank applicants. In 

Boston, applicants for a given school are first ranked with respect to the priority categories and then the outcome of 

the lottery is used to rank those within the same priority category. In Miami-Dade, on the other hand, a weighted 

lottery is conducted where more random numbers are generated for those in higher priority categories. The rankings 

are then constructed using the best random number for each applicant. In this paper, I focus on the former noting 

that the results also apply to the latter. 
6
 School priorities and the assignment mechanism are given so schools are not players in the game. This is in 

contrast to some two-sided matching problems as discussed in Gale and Shapley (1962). 
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submitted, may yield different outcomes (assignments) with known probabilities depending on the 

lottery result. 

Consider the following assignment problem where  kP,,P,PP 21  is the set of pre-lottery 

school priority rankings over students and  nT,,T,TT 21  is the set of strict true student preferences 

over schools implied by j

iU . In this setting, let  prTI em ,,  denote the set of students who are in a 

given priority category p for school sm and have the same true preference ranking of schools  TTe   

with sm being their rth choices. 

Definition 1: For all values of eT , r and p, the members of the set  prTI em ,,  are equal for school sm.  

                   ■ 

Important to note in this definition is that the equals are defined at the school level. That is, 

student priorities at other schools are not taken into account to identify the equals at a given school. 

This is implied by the public school assignment problem described earlier. In this problem, applicants at 

each school are ranked first based on their priority category, and then by their random lottery outcome 

to provide equal opportunity of admission to students in the same priority categories. This suggests 

that, within each category, students are regarded as equals, and this notion of equality is independent 

of student priorities at other schools.  

This definition is also supported by the stated objectives of priority categories in many state and 

local school choice policies (e.g. Florida Statute 1002.31). For instance, many school districts (e.g. New 

York City, Boston, Chicago, Miami-Dade, District of Columbia Public Schools etc.) require siblings of 

current students to be provided higher priority for a seat in that school. The objective of this preference 

is twofold. First, by placing siblings at the same school, school districts aim to increase parental 

involvement in the school. Second, siblings attending the same school present significant cost 

efficiencies for both the household and the district. Therefore, from a purely education policy 
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perspective, it is counterintuitive to expect that having a sibling at one school should provide an 

applicant leverage or disadvantage over others for admission into another school.  

Suppose that there are L possible ways the ties in P can be broken. Let  LA,,A,AA 21  

denote an arbitrary set of assignments for all outcomes of the lottery, and   P,T,A|jPrt  represent 

the conditional probability of being assigned to her jth  preferred school (based on true preferences) for 

an arbitrary student  prTIi emt ,,  under the assignment set A.7 

Definition 2: A is an equal treatment assignment set for the members of  p,r,TI em  if, for an arbitrary 

pair of students  p,r,TIi,i emut  ,  

a.    P,T,A|rPrP,T,A|rPr ut   if 1r .  

b.    P,T,A|rPrP,T,A|rPr ut   given that    P,T,A|jPrP,T,A|jPr ut   for all rj   and 

1r .                   ■ 

To illustrate equal treatment, consider the following simple case where two students are equal for their 

most preferred schools: 

Example 1: Let n = k = 3 and (c1, c2, c3) = (1, 1, 1). In other words, suppose that there are three students 

(i1, i2, i3) and three schools (s1, s2, s3), each of which has only one seat available. Public school 

preferences of students and pre-lottery priority rankings of students at each school are given as: 

   i1: s1 > s2 > s3   s1: i3 > i1 = i2   

    i2: s1 > s2 > s3   s2: i2 > i3 > i1    
   i3: s2 > s1 > s3   s3: i1 > i2 > i3       
      

where ‘>’ indicates strict preference for students and higher priority category for schools whereas ‘=’ 

indicates that the two students are in the same priority category for the given school. 

                                                 
7
 In practice, the cardinality of some of the sets  prTI

em
,,  is likely to be large if many students rank schools based 

on a common observed school quality hierarchy. 
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Notice that, in this example, students i1 and i2, who are in the same priority category for s1, have 

the same public school preferences with s1 being their first choices. The equal treatment criterion 

implies that one of these students can be assigned to s1 if and only if the other student is assigned to s1 

in the other outcome of the lottery. Absent equal treatment, the assignment set will provide one of the 

two equivalent students an incentive to seek legal action to overturn her assignment.  

On the other hand, when 1r ,    P,T,A|rPrP,T,A|rPr ut   does not necessarily imply 

that the equal treatment criterion is violated; the lower probability of assignment to school sm might be 

the result of that student being assigned to a more preferred public school for all outcomes of the 

lottery (i.e.   1P,T,A|jPru  for some rj  , which implies that   0P,T,A|rPru ). The latter 

condition in the equal treatment criterion rules out this possibility by imposing that all members of the 

set  prTI em ,,  have equal probability of assignment to each public school they prefer to sm. Hence, 

  1P,T,A|jPru  if and only if   1P,T,A|jPrt  for some rj  , which in turn implies that 

    0 P,T,A|rPrP,T,A|rPr ut . 

Definition 3: An assignment mechanism is an equal treatment mechanism if and only if it generates 

equal treatment assignment sets for all  p,r,TI em  given arbitrary T and P.          ■ 

In what follows, I introduce and evaluate four prominent assignment mechanisms along this 

equal treatment criterion and show that they all fail to satisfy this new norm of merit. 

  

3. Equal Treatment and the Assignment Mechanisms 

3.1. The Boston Mechanism 

One of the most commonly used student assignment mechanisms is the Boston mechanism, so 

named because of its use until recently in Boston. This mechanism is still being used in other major 

school districts including Cambridge (MA), Charlotte (NC), Denver (CO), Hillsborough (Tampa, FL), 
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Miami-Dade (FL), Minneapolis (MN) and Pinellas (St.Petersburg, FL). Under the Boston mechanism, a 

student who is not assigned to his first choice is considered for his second choice only after the students 

who ranked that student’s second choice as their first choices. Formally, the algorithm is as follows: 

 In the first step, only the first choices of students are considered. Based on schools’ post-lottery 

priority rankings of students, seats at each school are assigned one at a time until either there 

are no seats left or there is no student left who has listed it as her first choice. 

 In the nth step, only the nth choices of the students who could not be placed in the (n-1)st round 

are considered. Based on schools’ post-lottery priority rankings of students, seats at each 

remaining school are assigned one at a time until either there are no seats left or there is no 

student left who has listed it as her nth choice.  

Applying this algorithm to Example 1, given that each student reveals her public school 

preference truthfully to illustrate, the Boston mechanism results in the assignments (i1, s1), (i2, s3) and (i3, 

s2) in the state of nature where the tie between i1 and i2 for school s1 is broken in favor of i1 or the 

assignments (i1, s3), (i2, s1) and (i3, s2) otherwise.8  

Recent literature has shown that truthful revelation of public school preferences is not 

necessarily the weakly dominant strategy for each parent under the Boston mechanism; strategy-

proofness fails. Furthermore, Pareto efficiency and stability also fail in reality, even though the Boston 

mechanism generates Pareto efficient assignments when students reveal their preferences truthfully as 

illustrated in Example 1.9 In other words, despite its common use, ironically, the Boston mechanism fails 

                                                 
8
 When applied to Example 1, the Boston mechanism works as follows. First step: Only the first choices are 

considered. Given the priorities, i3 is assigned to s2. If the tie between i1 and i2 for school s1 is broken in favor of i1, i1 

is assigned to s1. Otherwise; i2 is assigned to school s1. Second step: Depending on the outcome of the random 

lottery, the student who gets rejected from s1 is assigned to s3, since the only available seat in s2 is occupied by i3. 

The algorithm terminates.  
9
 See Abdulkadiroglu and Sonmez (2003). If all students reveal truthfully, the assignments generated by the Boston 

mechanism will be Pareto efficient. While the findings of Ergin and Sonmez (2006) also suggest that the Boston 

mechanism produces stable assignments under students’ true preferences in equilibrium, Ozek (2009) shows that 

this result relies on complete information assumption, which is not satisfied in practice due to the timing of lotteries. 
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to satisfy all three properties of a ‘well-behaving’ assignment mechanism in practice.10 Given these 

results, three alternatives have so far been proposed to replace the Boston mechanism: the Gale-

Shapley Deferred Acceptance (GS-DA) mechanism, which, in fact, replaced the Boston mechanism in 

Boston Public Schools in 2006, the Top-trading Cycles (TTC) mechanism, and the Stable Improvement 

Cycles (SIC) mechanism.  

 

3.2. Top-trading Cycles Mechanism 

 Abdulkadiroglu and Sonmez (2003) show that the TTC mechanism is strategy-proof and Pareto 

efficient; however, stability is not guaranteed. The formal algorithm works as follows: 

 Step 1: Each student points to her favorite school and each school points to the highest priority-

ranked student. Assign all students in a cycle to the schools they point to and remove them from 

the cycle.11 Also remove a school from the available schools list if its capacity becomes full. 

 Step k: Apply the same algorithm to the remaining students and schools. The process terminates 

when there are no remaining cycles. 

When applied to Example 1, for the true preferences which are expressed in equilibrium, the TTC 

mechanism results in the assignments (i1, s3), (i2, s1) and (i3, s2) for both outcomes of the lottery.12 

 

3.3. Gale-Shapley Deferred Acceptance (GS-DA) Mechanism 

Unlike the previous two mechanisms, none of the assignments are guaranteed until the 

assignment algorithm terminates under this mechanism. The algorithm works as follows: 

                                                 
10

 See Abdulkadiroglu and Sonmez (2003) and Ozek (2009). 
11

 A cycle is an ordering of distinct students and schools (s1, i1, s2, ... , sk, ik) where s1 points to i1, i1 points to s2, …, sk 

points to ik, ik points to s1. In a public school assignment problem, we know that there is at least one cycle, since the 

number of students and schools are finite. 
12

 When applied to Example 1, the TTC mechanism determines the public school assignments as follows. First step: 

There is only one cycle: i2  s1 i3  s2  i2. i2 is assigned to s1 and i3 is assigned to s2. Students i2 and i3 are 

removed from the algorithm as well as schools s1 and s2, which become full. Second step: The only cycle is between 

i1 and the only remaining school, s3. i1 is assigned to school s3 and the algorithm terminates. 
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 Step 1: Each student’s first choice is considered. Each school places all applicants into its queue 

unless the number of applicants is higher than the number of seats available at the school. 

Otherwise, each school rejects the applicants ranked lower than its number of empty seats using 

its post-lottery priority ranking, while placing the rest of the applicants in its queue. 

 Step k: The rejected applicants’ next choices are considered. Comparing the new applicants with 

the applicants already in the queue, each school replaces the students on its queue based on its 

priority rankings. The process terminates when no student is rejected and each student is 

assigned to the school whose queue she belongs to when the algorithm terminates.  

Applying to Example 1, again using the true preferences, the GS-DA mechanism yields the 

assignments (i1, s3), (i2, s2) and (i3, s1) if the tie is broken in favor of i1 or produces (i1, s3), (i2, s1) and (i3, s2) 

otherwise.13 Even though it preserves strategy-proofness and guarantees stable assignments, the GS-DA 

mechanism does not necessarily result in Pareto efficient assignments14. Notice that in the state of 

nature where i1 wins the lottery, the resulting assignment is Pareto dominated by (i1, s3), (i2, s1) and (i3, 

s2), which is also stable under students’ true preferences and pre-lottery priority rankings at schools.  

 

3.4. Stable Improvement Cycles Mechanism 

Noting the inefficiencies in the GS-DA mechanism when applied to the public school assignment 

problem described above, Erdil and Ergin (2008) present a new assignment mechanism that achieves 

Pareto efficiency among the set of stable assignments (i.e. student-optimal stable assignments). 

However, this mechanism is not strategy-proof. The algorithm works as follows; 

                                                 
13

 When applied to Example 1, if the tie is broken in favor of i1, the GS-DA mechanism works as follows. First step: 

i1 is in the queue of s1, i3 is in the queue of s2, and i2 gets rejected from school s1. Second step: i2 proposes to school s2 

and i3 gets rejected from school s2. Third step: i3 proposes to school s1 and i1 gets rejected from school s1. Fourth 

step: i1 proposes to school s2 and gets rejected from school s2. Fifth step: i1 proposes to school s3 and the algorithm 

terminates. If the tie is broken in favor of i2, first step: i2 is in the queue of s1, i3 is in the queue of s2, and i1 gets 

rejected from school s1. Second step: i1 proposes to school s2 and gets rejected from school s2. Third step: i1 proposes 

to school s3 and the algorithm terminates. 
14

See Dubins and Freeman (1981) and Roth (1982).  
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 Step 1: Obtain a set of assignments using the GS-DA algorithm. 

 Step k: Each student points to all students that are assigned to the school(s) she strictly prefers 

to her current assignment if there is any. Define an improvement cycle to be a cycle consisting of 

a set of students {i1, i2, i3 … , in} such that student ij points to student ij+1  and in points to 

i1.Furthermore, this cycle is called a stable improvement cycle if it satisfies the following 

condition; 

 At the school student ij  is assigned to (call it sj) , student ij-1  is among the highest priority 

students who desire a seat at school sj. 

Assign student ij-1 to sj if this requirement is satisfied. Continue changing assignments until there 

is no other stable improvement cycle left.  

Consider Example 1, first assuming that each student reveals truthfully in equilibrium. There is 

no stable improvement cycle if the tie is broken in favor of i2, since both i2 and i3 are assigned to their top 

choices by the GS-DA mechanism. In the other state of nature, however, there is a stable improvement 

cycle under which i2 and i3 point to each other. Therefore, SIC mechanism yields the assignments (i1, s3), 

(i2, s1) and (i3, s2) for both outcomes of the lottery. 

I now examine whether truthful revelation of all students constitutes a Nash equilibrium 

strategy set under the SIC mechanism. Provided that the other two students reveal truthfully, neither i2 

nor i3 can be better-off by misreporting their preferences, since SIC mechanism assigns these students to 

their top choices if they reveal truthfully. Furthermore, provided that i2 and i3 reveal truthfully, i1 will be 

assigned to s3 regardless of her revealed preference ranking under any student-optimal stable 

assignment set. This follows since any assignment that places i2 or i3 to s3 is not stable if i2 and i3 reveal 

their true preferences. Therefore, revealing truthfully is a weakly dominant strategy for all students in 

this example. This is consistent with Erdil and Ergin (2008), which show that it is a Nash equilibrium for 
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all students to reveal their true preferences when the student-optimal stable set under true preferences 

is a singleton. 

Proposition 1: None of the aforementioned assignment mechanisms satisfies equal treatment. 

Example 1 is sufficient to show that the three alternative mechanisms fail to satisfy equal 

treatment.15 In this case, in order to comply with this requirement, an assignment mechanism needs to 

provide students i1 and i2 equal probability of assignment to school s1, since i1 and i2 report s1, for which 

they are equivalent, as their first choices. Under all alternatives, i1 has no chance of being assigned to s1 

whereas the equivalent student i2 has 0.5 chance of being assigned to s1 under the GS-DA mechanism, 

and is guaranteed a seat in s1 under the TTC and the SIC mechanisms. Furthermore, among the 

proposed alternatives, the TTC and the SIC mechanisms are worse yet in the following sense. These two 

mechanisms result in assignments where even though i1 wins the lottery over i2 for s1, i2 is assigned to s1. 

The GS-DA mechanism, on the other hand, avoids such cases by assuring assignments that are stable 

with respect to the post-lottery priority rankings.16  

To show that the Boston mechanism violates equal treatment, consider a slightly modified 

version of Example 1 where the student preferences and school priorities are given as follows: 

i1: s1 > s2 > s3   s1: i3 > i1 = i2   

    i2: s1 > s2 > s3   s2: i2 > i3 > i1    
   i3: s2 > s3 > s1   s3: i1 > i2 > i3       
 
Using these student preferences, I now construct a Nash equilibrium strategy set under which one of the 

students reveals untruthfully and the Boston mechanism yields unfair assignments.17  

                                                 
15

 Example 1 illustrates a case where the number of public schools equals the number of choices each parent can 

make, which is typically pre-determined by the school district. It is worth noting that the analysis extends to cases 

where the number of public schools exceeds the ‘allowed’ number of choices. 
16

 Since the GS-DA mechanism guarantees stable assignments with respect to post-lottery priority rankings, there 

can not exist a school-student pair such as (i1, s1) where i1 strictly prefers s1 to her current assignment and i1 has 

higher priority than at least one student assigned to s1 (i2) with respect to post-lottery priority rankings. 
17

 Notice that, given all students reveal truthfully, Boston mechanism results in the assignments (i1, s1), (i2, s3) and 

(i3, s2) in the state of nature where the tie between i1 and i2 for school s1 is broken in favor of i1 or the assignments 

(i1, s3), (i2, s1) and (i3, s2) otherwise, providing equal probability of assignment to s1 for i1 and i2. 
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Under the Boston mechanism, in the case where all students report their most preferred schools 

as their first choices, i2 has a 0.5 chance of being assigned to s1 (if she wins the lottery) and 0.5 chance of 

being assigned to school s3 (if she loses), hence yielding an expected utility of )(5.0 3

2

1

2 UU  . On the 

other hand, if she reports s2, in which she has the highest priority, as her first choice, she will be 

assigned to that school regardless of the actions of others. Thus, provided that )(5.0 3

2

1

2

2

2 UUU  , i2’s 

best response to other students revealing their top choices truthfully is to reveal untruthfully and rank s2 

as her first choice. Given that i2 and i3 reveal s2 as their first choices, i1 will rank s1 as her first choice and 

be assigned to her most preferred school. Finally, provided that i1 and i2 rank s1 and s2 as their first 

choices respectively, i3 has no chance of being assigned to her most preferred school (s2) and will be 

indifferent between all strategies that result in her assignment to s3  (i.e. all strategies that rank s1 

second or lower). Therefore, i1 revealing s1- s2- s3, i2 revealing s2- s1- s3 and i3 revealing s2- s3- s1 is one of 

the multiple Nash equilibrium strategy sets of this game, producing the assignments (i1, s1), (i2, s2) and 

(i3, s3) for both outcomes of the lottery and violating the equal treatment property.  

The main reason behind this finding is that, under all these mechanisms, the priorities of 

students at one school might affect their admission probabilities at others. That is, for instance, living in 

the walk zone of school B might provide a student advantage/disadvantage for admission to school A 

over an equivalent student at that school. Under the alternatives, this is a direct consequence of the 

algorithm mechanics to generate assignments that satisfy the other norms of merit. To illustrate, 

consider the TTC mechanism when applied to Example 1. In this case, i2 trades her high priority at s2 with 

i3, who is in the highest priority category at s1, and guarantees a seat at s1 regardless of the lottery 

outcome. This priority swap between the two students, which preserves the Pareto efficiency of the 

resulting assignments, provides i2 leverage over i1 for the seat in s1, thus violating equal treatment. 

Similarly, the queue replacement in each step of the GS-DA mechanism, which preserves stability, leads 

i1 to lose her spot at s1 even when she wins the lottery over i2. Furthermore, there are cases, as 
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illustrated in Example 1, where constrained efficiency can only be achieved in the expense of equal 

treatment. In that example, notice that the set of student-optimal stable assignments is a singleton. 

However, if an assignment mechanism generates this assignment set (i.e. (i1, s3), (i2, s1) and (i3, s2)) for 

both outcomes of the lottery, it violates equal treatment.  

Observation: Define student-optimal stable mechanism (SOSM) as the mechanism that yields a student-

optimal stable assignment set for any T and P. There exists no SOSM that complies with the equal 

treatment criterion. 

Under the Boston mechanism, on the other hand, high priority at one school might affect the 

admission probabilities at others only by influencing the actions of students. That is, similar to the 

Pareto efficiency of the Boston mechanism assignments, equal treatment under the Boston mechanism 

hinges on student manipulation of true preferences. This is apparent in the aforementioned variant of 

Example 1 where the Boston mechanism provides i2 lower probability of admission to s1 because i2 

prefers to misreport her true preferences in equilibrium and list s2, at which she is in the highest priority 

category, as her first choice. 

Proposition 2: The assignment set produced by the Boston mechanism will be an equal treatment set 

for the members of  p,r,TI em  if all of them reveal their preferences truthfully in equilibrium. 

I present the intuition behind this finding whereas the formal proof is provided in Appendix A. 

Given T and P, suppose that all  p,r,TIi emt   reveal their preferences truthfully in equilibrium. Let AB 

represent the assignment set generated by the Boston mechanism under these preferences and pre-

lottery priority rankings. First consider the case depicted in part (a) of Definition 2. In the first step of the 

Boston mechanism, there are three possible scenarios for the assignments of   p,r,TIi,i emut 1 . 

Given the pool of students who ranked sm as their first choices, if the number of remaining seats after all 

applicants in higher priority categories than p for sm are assigned exceeds the number of applicants in 
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priority category p, both ti  and ui  will be assigned to sm for all possible outcomes of the lottery 

    111  BuBt A|rPrA|rPr  whereas neither will be assigned     011  BuBt A|PrA|Pr  

if no seats remain. On the other hand, the outcome of the random lottery will determine which 

student(s) in priority category p will be assigned to sm, if the number of seats is greater than zero, yet 

not large enough to accommodate all applicants in priority category p. Notice that in all three scenarios, 

AB provides ti  and ui  equal probability of assignment to sm. The same logic applies to cases where 

1r , since the latter condition in part (b) of fairness definition ensures equal probability of ‘arrival’ to 

step r for all members of  p,r,TI em  under the Boston mechanism. 

                  

4. Policy Implications and Concluding Remarks 

Centralized assignment procedures in large urban school districts provide various advantages 

over decentralized systems as they reduce administrative costs, and enable school districts to obtain a 

clearer picture of student preferences over schools, facilitating better enrollment projections. The 

findings presented in the previous section, on the other hand, suggest that these gains are achieved at 

the expense of fair assignments, possibly inducing legal challenges. The use of broad priority categories 

to rank students is the main reason behind these legal ramifications. Therefore, there are two paths 

school districts can pursue in order to benefit from the desirable features of centralized systems while 

avoiding such challenges.  

In one extreme, school districts can choose criteria that strictly rank students at each school and 

thus eliminate the random lotteries. Then, trivially, equal treatment is satisfied since no two students 

can be ranked the same by any school.  A common example of this practice is the use of proximity-based 

measures such as ‘distance from the applicant’s primary address to the school’, as evidenced in Seattle 
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Public Schools (WA) and Pinellas County (FL).18 If ranking students on a measured ability scale is socially 

acceptable, with the same ranking at each school, another example of this approach arises. 

At the other extreme, school districts can avoid the aforementioned classification by completely 

eliminating priority categories and conducting a single random lottery, which breaks the ties between all 

students in the same way for each school, to determine the public school assignments. In this case, all of 

the aforementioned assignment mechanisms produce the same assignments as the random serial 

dictatorship (RSD) mechanism, which is strategy-proof and works as follows: order all students with a 

random lottery and assign the first student to her first choice, the next student to her top choice among 

the remaining slots, and so on.19 However, notice that this is a symmetric problem for any pair of 

‘identical’ students, since, ex ante, all students have the same priority at each school and all possible 

priority rankings of students are equally-likely.  

While not ‘problem free’, these assignment procedures suggest that school districts might 

benefit from the appealing features of centralized assignments without inducing legal challenges. The 

equilibrium implications differ markedly across the alternatives however. Using proximity as a criterion 

to determine public school assignments counteracts the main objective of public school choice programs 

by implicitly reducing the number of ‘feasible’ school choices available to students. Consider the 

extreme case where students share a common perceived quality hierarchy of schools.  Then, with the 

proximity criterion, housing prices would ultimately conform to the hierarchy, households would sort by 

income and preference for school quality, and a neighborhood schooling system would effectively 

emerge.  If schools instead rank students by a standardized ability measure, again assuming a common 

                                                 
18

 Pinellas County School Board uses the ‘shortest driving distance from the applicant’s primary address to the 

public school computed to the nearest hundredth of a mile’ whereas Seattle Public Schools employ the ‘straight-line 

distance from the primary address to the public school’ as a criterion to determine public school assignments. In 

both cases, the student living closer to the public school is given higher priority. 
19

 A detailed explanation is available upon request. We also know that the RSD mechanism is stable and Pareto 

efficient (Abdulkadiroglu and Sonmez, 2003). Therefore, employing a single random lottery along with the 

alternative mechanisms to determine the public school assignments preserves the appealing features of the 

alternatives. 
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ranking of school qualities, then ability stratification across the hierarchy can be predicted.  In the 

alternative with school rankings based solely on a lottery, perhaps the purest form of school choice, one 

can predict a representative cross section of students across a given school quality hierarchy.  Hence, 

the choice of the assignment procedure has profound implications for access to schools along the 

quality hierarchy so that the preferred approach requires an expression of social preferences. The 

findings presented above, on the other hand, suggest that all of the prominent assignment mechanisms 

discussed in the literature might induce legal challenges in a hybrid assignment process where broad 

priority categories along with random lottery results are used. 

Finally, important to note is that this study presents an equal treatment criterion using the true 

preferences of students. However, school districts might also be interested in the equal treatment of 

‘equal’ applicants; that is, the students in the same priority categories at schools and with identical 

revealed preferences (i.e. identical ‘actions’). While these school rankings might diverge from the true 

preferences of students, especially under assignment mechanisms that induce gaming (e.g. the Boston 

mechanism), revealed preferences might be relevant as student challenges to assignments based on 

unobserved true preferences are arguably less likely to succeed in practice. The findings above suggest 

that among the aforementioned assignment mechanism, the Boston mechanism is the only one that 

satisfies this interpretation of equal treatment. This might provide a possible explanation to the 

persistence of the Boston mechanism in many school districts despite its documented shortcomings. 
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Appendix A. Proof of Proposition 2 

Suppose that given T and P, all members of  p,r,TI em  reveal their preferences truthfully 

under the Boston mechanism, which then generates the assignment sample space AB. Let ta denote the 

step of the Boston mechanism in which student  p,r,TIi emt   is assigned to a public school. Under 

the Boston mechanism, since only the nth choices of the remaining students are considered in the nth 

step, we know that  

   BttBt A|raPrA|rPr   

for all possible values of r. When r > 1, suppressing AB, this can be written as: 

     1Pr*1|PrPr  rararara ttttttt       (A-1) 

If   1Pr jt  for some rj  , then the second probability on the right-hand side of equation (A-

1) equals zero. This implies that     0 BuBt A|rPrA|rPr  for an arbitrary pair of students 

 prSIii emut ,,,  , since    jj ut PrPr   for all rj   as required by the fairness condition. 

  On the other hand, if   1Bt A|jPr  for any rj  , the second probability on the right-hand 

side of equation (A-1) is non-zero, and equation (A-1) can be written as: 

         





1

2

1Pr1*1|Pr1*1|PrPr
r

j

tttttttttt ajajararara  (A-2) 

Lemma:    1|Pr1|Pr  jajajaja uuuttt  for all rj  . 

Proof: Consider  1|Pr  jaja ttt  when j = 2: 

 
 
 

 
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 1|2Pr
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2Pr
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



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
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a
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since    jj ut PrPr   for all rj  . Likewise, when j = 3, 
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 
 

     
 2|3Pr

1Pr11|2Pr1

3Pr
2|3Pr 




 uuu

ttttt

tt
ttt aa

aaa

a
aa  

since    jj ut PrPr   for all rj   and    1|2Pr1|2Pr  uuuttt aaaa . By iteration, one 

can easily show that    1|Pr1|Pr  jajajaja uuuttt  for all rj  .           ■ 

Therefore, following (A-2), in order to prove that the Boston mechanism satisfies the equal 

treatment condition, we only need to show that  

   1|Pr1|Pr  rararara uuuttt  

Provided that 1 rat  and 1 rau , there are two types of students who will be considered 

for a seat in school sm prior to ti  and ui  under the Boston mechanism:  

1) The students who rank sm higher than r (if r > 1). 

2) The students who are in a higher priority category than p for sm and rank school sm as their rth 

choices. 

Let  rcm  denote the number of remaining seats at school sm in the rth step of the Boston mechanism 

after the two types of students satisfying these criteria are assigned, and  prsn m ,,  denote the number 

of remaining students who are in priority category p for school sm and submit sm as their rth choices. 

Notice that  p,r,TI em  is a subset of the latter subgroup of students. There are three cases to consider 

for equal treatment as determined by the relative values of  rcm  and  prsn m ,, . In the extreme cases 

where   0rcm  or    prsnrc mm ,, , we know that 

   1|Pr1|Pr  rararara uuuttt  under the Boston mechanism, since neither of the 

two students will be assigned to sm if the former condition is satisfied 

    01|Pr1|Pr  rararara uuuttt  whereas both will be guaranteed a seat in sm 

    11|Pr1|Pr  rararara uuuttt  under the latter condition.  
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On the other hand, if    prsnrc mm ,,0  , the outcome of the random lottery will 

determine which (if any) member(s) of  prSI em ,,  will be assigned to sm. For a given outcome of the 

lottery, let  tiR  represent the post-lottery ranking of student  p,r,TIi emt   among the students 

who are in priority category p for sm and rank that school as their rth choices. Under the Boston 

mechanism, ti  will be assigned to sm if and only if    rciR mt  . Therefore,  

      
 

 prsn

rc
rciRrara

m

m

mtttt
,,

Pr1|Pr   

is independent of ti , which shows that    BuBt A|rPrA|rPr   for an arbitrary pair of students 

 prSIii emut ,,,  ; and completes the proof.             ■ 
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