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Abstract 

We present evidence of a positive relationship between school starting age and children’s cognitive 

development from age 6 to 18 using a fuzzy regression discontinuity design and large-scale population-

level birth and school data from the state of Florida. We estimate effects of being old for grade (being 

born in September versus August) that are remarkably stable – always around 0.2 SD difference in test 

scores – across a wide range of heterogeneous groups, based on maternal education, poverty at birth, 

race/ethnicity, birth weight, gestational age, and school quality. While the September-August difference 

in kindergarten readiness is dramatically different by subgroup, by the time students take their first 

exams, the heterogeneity in estimated effects on test scores effectively disappears. We do, however, 

find significant heterogeneity in other outcome measures such as disability status and middle and high 

school course selections. We also document substantial variation in compensatory behaviors targeted 

towards young for grade children. While the more affluent families tend to redshirt their children, young 

for grade children from less affluent families are more likely to be retained in grades prior to testing. 

School district practices regarding retention and redshirting are correlated with improved out- comes for 

the groups less likely to use those remediation approaches (i.e., retention in the case of more-affluent 

families and redshirting in the case of less-affluent families.) Finally, we find that very few school policies 

or practices mitigate the test score advantage of September born children. 

Keywords: school starting age, educational attainment, socioeconomic gradient, redshirting, grade 

retention 

 



1 Introduction

One of the largest questions that looms in a parent’s mind while thinking about enrolling their chil-
dren in primary school for the first time is whether or not they are “ready” for school. This question
has been made more fraught as the popular media frequently reports on research findings regarding
the negative effects of entering school too young (e.g. Weil 2007). In response, an increasing number
of parents in the United States have been delaying sending their children to kindergarten because
they believe doing so will give them an advantage over their peers, whether academically, socially,
or even athletically (Deming and Dynarski 2008). This practice is called redshirting. As an alterna-
tive, schools can retain children in early grades in order to allow them to mature enough for primary
school challenges. Despite an ever growing academic and popular culture literature, however, it is
still unclear what disadvantage certain children face due to their age at school entry and what the
best remediation method is for that disadvantage.

The age distribution at school entry exists because most states in the United States and ju-
risdictions worldwide have a single specific cutoff date which determines when a student can enter
primary school. For example, in Florida, a child is eligible to enter kindergarten if s/he turns five
years old by September 1st of the relevant school year. These cutoffs effectively cause the oldest child
to be up to one year older than the youngest child in a school cohort. A number of recent studies
have found that children who enter school at an older age than their classmates have a variety of
short- and medium-run advantages such as scoring higher on standardized exams through primary
and secondary school1, having higher development of non-cognitive skills (Lubotsky and Kaestner
2016), and being less likely to commit a crime (Cook and Kang 2016; Depew and Eren 2016). Some
other examples of outcomes investigated in this literature include high school leadership (Dhuey and
Lipscomb 2008), becoming a corporate CEO (Du et al. 2012) or politician (Muller and Page 2016),
secondary school track placement (Bedard and Dhuey 2006; Puhani and Weber 2007; Muhlenweg
and Puhani 2010; Schneeweis and Zweimuller 2014), fertility (Black et al. 2011; McCrary and Royer
2011; Tan 2017; Pena 2017), and disability identification, mental health and special education ser-
vice uptake.2 All these findings together suggest that early differences in maturity can propagate
through the human capital accumulation process into later life and may have important implications
for adult outcomes and productivity. At the same time, the evidence regarding the relationship be-
tween being older at school entry and a variety of adult outcomes is more mixed. Previous research
includes inconclusive results on both academic attainment3 and wages.4

We use detailed population-level administrative data from the state of Florida, where we observe
matched birth and schooling outcomes, to study the effect of age at school entry. In doing so,
we make three principal contributions to the literature on the effects of school starting age. First,
we offer the most comprehensive set of controls for potential selection into timing of birth yet
considered in the literature, and bring together in the same research design the two most compelling

1See for example: Bedard and Dhuey (2006); Datar (2006); Crawford et al. (2007); Puhani and Weber (2007);
McEwan and Shapiro (2008); Elder and Lubotsky (2009); Smith (2009); Crawford et al. (2010); Sprietsma (2010);
Kawaguchi (2011); Robertson (2011); Nam (2014); Lubotsky and Kaestner (2016); McAdams (2016); Landerso et al.
(2017b); and Attar and Cohen-Zada (2017).

2Black et al. (2011); Dhuey and Lipscomb (2010); Elder (2010); Elder and Lubotsky (2009); Evans et al. (2010);
Morrow et al. (2012); and Dee and Sievertsen (2017)

3Dobkin and Ferreira (2010) and Black et al. (2011) find little to no effect on academic attainment whereas Bedard
and Dhuey (2006); Kawaguchi (2011); Fredriksson and Ockert (2014); Cook and Kang (2016); Pena (2017) find a
positive effect of being older on academic attainment. However, Hemelt and Rosen (2016) and Hurwitz et al. (2015),
find the opposite to be true.

4For instance, Fredriksson and Ockert (2014), Kawaguchi (2011), and Pena (2017) find that older children at school
entry earn higher wages. In contrast, Black et al. (2011), Dobkin and Ferreira (2010), Fertig and Kluve (2005), Nam
(2014) and Larsen and Solli (2017) find no such long-term wage effects.
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approaches used in the literature to attempt to correct for this selection. Specifically, we present
the first evidence from an environment in which we can execute a regression-discontinuity design,
comparing children whose ages mean that they would “naturally” be the oldest in their class to
those whose ages mean that they would “naturally” be the youngest in their class, while at the same
time making this comparison within families. Comparing one child born in August to their sibling
born in September dramatically reduces the likelihood that observed results are due to unobserved
differences in families who time births for August versus those who time births for September.5
Some studies (Cook and Kang 2016; Elder and Lubotsky 2009) have made use of the regression
discontinuity approach before, and one study (Black et al. 2011) has made sibling comparisons, but
we are the first to simultaneously compare siblings who just barely met or missed the threshold
for school attendance in a given academic year. We also are able to control for conditions and
treatments surrounding pregnancy and birth. We ultimately find that these extra controls do not
alter our results, indicating that omitted-variables bias in the extant literature is likely not as large
as some might fear ex ante. At the same time, since we can track students from birth to schooling we
document the demographic differences between these two populations and find that the estimation
sample is negatively selected. This issue may be very common in other data sets used in this
literature, however, it is not possible to address it using only school records. Thus, we carry out a
bounding exercise to determine the degree at which this might influence our results.

Our second contribution involves a comprehensive study of the heterogeneous effects of school
starting age. Families differ dramatically in terms of the degree to which they actively attempt to
remediate their children’s being young for grade. Schanzenbach and Howard (2017), for example,
report that summer-born sons of college-educated parents are nearly four times as likely to be
redshirted as are summer-born sons of high-school educated parents. Similarly, Cook and Kang
(2018) document differences in redshirting in various groups in North Carolina. If families differ this
remarkably regarding how they treat young children, it stands to reason that the effects of school
starting age might be different for different groups of children. To date, however, there has been little
comprehensive research examining the heterogeneous effects of school starting age in the US context,
largely due to limitations in US administrative data, and the studies that exist have generally not
been able to carry out the analysis using the preferred regression discontinuity approach or using
exhaustive individual and family background information.6 This paper represents the most robust
analysis of heterogeneous effects of school starting age in a regression discontinuity framework.
Moreover, we consider a wide range of cuts of the data on a wide range of outcomes (including
test scores, disability and gifted status, middle and high school course selection and high school

5Of course, it’s always possible that a family might, for some reason, intentionally time one birth for September
but not do so for another birth, but at least any characteristics of a family that are invariant across siblings will be
absorbed in the family fixed effect.

6School registers in the US rarely contain background variables other than race/ethnicity and free lunch status, so
only with either a match to birth certificates or the use of Census style data sets researchers can study heterogeneous
effects with regard to a wide range of background factors. Heterogeneity has been investigated in settings with
broader access to registry data, and thus background variables: Chile (McEwan and Shapiro (2008), who find little
differences in the effects of school starting age by parental education); Denmark (Landerso et al. (2017b), who find
evidence for smaller adverse effects of school starting age on crime for groups with both better educated mothers and
unemployed fathers); Israel (Attar and Cohen-Zada (2017), who find little differences by parental education); Norway
(Black et al. (2011), who find little differences by predicted family affluence); and Sweden (Fredriksson and Ockert
(2014), who find larger advantage in both education and earnings for children of lower educated parents). In the U.S.,
Datar (2006) and Elder and Lubotsky (2009) estimate the effects of school starting age by family SES background
but find conflicting results. Cook and Kang (2016) use population-level data and a regression discontinuity analysis,
but because they focus on crime and delinquency they only investigate various definitions of significant disadvantage.
Hemelt and Rosen (2016) examine longer run outcomes in a regression discontinuity framework by race/ethnicity and
poverty proxy (FRL), however, they do not observe actual kindergarten entry.
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graduation). We stratify by maternal education; by poverty at birth; by race and ethnicity; by birth
weight; by gestational age; and by experienced school quality; as well as by gender interacted with
many of these stratifications. These stratifications are potentially important because they illustrate
how age effects might differ depending on generalized school factors or by biological factors. For
example, we know that better neonatal health, as proxied by higher birth weight, has a positive
effect on longer-run outcomes such as educational attainment, IQ, and life-cycle earnings (Black et
al. 2007; Figlio et al. 2014; Bharadwaj et al. 2017). Therefore, it is natural to think that maybe
birth weight might dynamically interact with a child’s age relative to their classmates within the
human capital production function framework (Cunha et al. 2010). This complementarity could
also occur to the degree to which educators have difficulty distinguishing between innate ability
and maturity. Birth weight and its subsequent effect on childhood height and weight may make
it difficult to disentangle maturity from ability as larger children may appear to be more mature
due to their physical stature. Likewise, gestational age is another avenue one might suspect could
affect the age gap (Figlio et al. 2016; Garfield et al. 2017). These interactions between initial birth
endowments and school starting age have never been studied in the extant literature.

We find remarkable stability in the effects of school starting age on test scores across exceptionally
different groups of people, and despite differences in both remediation strategies and non-test score
outcomes like disability diagnoses or course enrollment. We further find that the August-September
gap in test scores is not mediated by measured school quality. This pattern of results suggests that
the academic remediation for being young for grade may be more challenging than those who seek
to remediate might believe. In the non-test score outcomes, the August-September difference is
smaller for higher educated and higher income families on being identified with a disability (in both
the behavioral and cognitive domains) and taking advanced courses in middle and high school. Our
heterogeneity estimates for high school graduation outcomes are not precise enough to infer any
particular pattern.

The finding of an exceptional lack of heterogeneous effects of school starting age on test scores
leads us to our third contribution. In this paper we directly explore the potential efficacy of school
policies and attempted remediation techniques. First, we explore the interaction of school level
policies with age at school entry. We are able to explore twenty different programs or policies
and find that only three interact with the estimates for school starting age - the practice of block
scheduling, summer school requirements for grade advancement among low-performing students and
class size. Interestingly both the first two policies and larger class size increase the August-September
difference.

Next we turn to a combination of parental and school remediation strategies. Like Schanzenbach
and Howard (2017), we show in our population-level data that there exist substantial differences in
remediating behaviors among parents of different socioeconomic groups, with higher-SES parents
being more likely to redshirt their children than lower-SES parents. Conversely, children who are
from lower-SES families are more likely than their higher-SES counterparts to be retained in early
grades. As a potential consequence of these two sets of actions, by the time children reach third
grade, the ratio of September- to August-born children who are below grade for age is roughly
equal across SES groups. This pattern of behaviors could help to explain why we document such a
strong SES gradient in the September-August difference in kindergarten readiness (where high-SES
families are disproportionately likely to redshirt August-born children) but no SES gradient in the
September-August difference in third grade test scores.

Armed with this evidence, we then turn to the following questions: Do school district practices
related to redshirting and retention help remediate the relative age effect? And are remediation
approaches like redshirting or grade retention more effective when used by groups for whom the
approach is unusual? While we cannot obtain strong causal evidence on this point, we produce
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suggestive evidence that indicates that this may be the case. Florida has large county-level school
districts that vary dramatically in the rate of redshirting or retention of August-born children.
Medium-to-large Florida school districts range in their August-born redshirting rates from fewer
than two percent to over ten percent, and range in their August-born early-grade retention rates
from 20 percent to 45 percent. Districts with relatively high redshirting rates have higher-than-usual
redshirting rates for both low-SES and high-SES August-born children alike (the correlation between
overall August redshirting rates and low-SES August redshirting rates in these districts is 0.737)
and districts with relatively high early-grade retention rates have higher-than-usual early-grade
retention rates for all SES groups (the correlation between overall August early-grade retention
rates and high-SES August early-grade retention rates in these districts is 0.745). We find that
districts where redshirting is more prevalent have lower August-September differences in test scores
for low-SES families (for whom redshirting is less common), and that districts where early-grade
retention is more prevalent have lower August-September differences in test scores for high-SES
families (for whom early-grade retention is less common). These findings, while merely suggestive,
indicate a potential role for strategically-deployed instructional policies and practices to help modify
preparation differences caused by school starting age cutoffs.

2 Estimation

2.1 Data

We used birth records from the Florida Department of Health for all children born in Florida between
1992 and 2000, merged with school records maintained by Florida Department of Education for the
academic years 1997-98 through 2012-13. The children were matched along four dimensions: first
and last names, date of birth, and social security number. Rather than conducting probabilistic
matching, the match was performed such that a child would be considered matched so long as
(1) there were no more than two instances of modest inconsistencies, and (2) there were no other
children who could plausibly be matched using the same criteria. Common variables excluded from
the match were used as checks of match quality. These checks confirmed a very high and clean match
rate. In the overall match on the entire population, the sex recorded on birth records disagreed with
the sex recorded in school records in about one-one thousandth of one percent of cases, suggesting
that these differences are likely due to typos in the birth or school records.

There were 1,220,803 singleton births with complete demographic information in Florida between
1994 and 2000, and of these 989,054 children were subsequently observed in Florida public schools
data, representing an 81.0 percent match rate. The match rate is almost identical to the percentage
of children who are born in Florida, reside there until schooling age, and attend public school, as
computed using data from the decennial Census and American Community Survey for years 2000
through 2009 (Figlio et al. 2014). Multiple births are excluded from the analysis while siblings are
identified in school districts representing the vast majority of Florida households. Figlio et al. (2014)
discuss the differences between these school districts, which are disproportionately non-rural, and
the state as a whole.

The data include a wide variety of demographic characteristics of the mother that are gathered
from the Florida birth certificate. These include racial-ethnic information, education level, marital
status at the time of the child’s birth, and place of residence. We also have demographic character-
istics of the father if he appears on the birth certificate, and health and demographic characteristics
of the newborn. We observe birth weight, gestational age and indicators for any maternal health
problems, whether or not they are related to the pregnancy. Finally, we know if the birth was paid
for by Medicaid, an indicator of living in or near poverty at the time of the birth.
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Moving to school records, we can observe school quality as defined by the state of Florida via its
school accountability system. Since 1999, the Florida Department of Education has awarded each
of its public schools a letter grade ranging from A (best) to F (worst). Initially, the grading system
was based mainly on average proficiency rates on the FCAT standardized exam. Beginning in 2002,
grades were based on a combination of average FCAT proficiency rates and average student level
FCAT test score gains from year to year. We utilize this information to construct a time-invariant
school quality measure. For each school, we compute a simple average of the observed gain scores
between 2002 and 2013, as measured by the Florida Department of Education, which we then convert
into a percentile rank in the observed gains distribution across Florida schools. These values are
then attached to students for each school year and school they attend.

Our data also include information about school policies and practices that come from surveys
administered to all public school principals in Florida. School surveys were conducted three times in
school years: 1999-2000, 2001-2002, and 2003-2004 (Rouse et al. 2013). In our analysis, we use the
first survey wave, which asked a broader set of questions, and we code schools as using a given policy
if they responded “yes” to a question.7 These questions and additional information are provided in
Appendix A1. We use five questions and assign school answers to students attending grade one in a
given school irrespective if they attended or not this school in a year when the survey was conducted.

We focus on a variety of short- and medium- term outcomes: kindergarten readiness, parental
holding back behavior (redshirting), school retention behavior, test scores from grade three through
eight, disability and gifted status, middle and high school course selection, as well as high school
graduation. Kindergarten readiness is measured by a universally-administered screening at the
entrance to kindergarten. The Florida Department of Education recorded readiness measures for
those who entered kindergarten in fall 2001 and before, and those who entered kindergarten in fall
2006 or later.8 Because of this data restriction we are unable to use this outcome for children born
between 1997 and 1999.

Holding back or redshirting is defined as an indicator variable that equals to one if a child has
higher than expected, based on date of birth, age at the time of first observation in school records
in either kindergarten or grade one.9 These are six or above for kindergarten and seven or above
for grade one. We view redshirting as primarily a parental decision. School retention prior to grade
three is defined as an indicator variable that equals to one if child is observed twice in the same
grade. Florida has mandatory retention policy in grade three, and thus we are unable to utilize
retention as school behavior measure after grade two (Schwerdt et al. 2015; Ozek 2015).

Our measure of academic performance is based on Florida Comprehensive Assessment Test
(FCAT) in mathematics and reading, a state-wide standardized yearly assessment of all students in
Florida conducted in grades three through ten. In this paper we focus on test scores in grades three
through eight, because curriculum differences make interpersonal test score comparisons relatively
difficult in high school (e.g., one tenth grader is taking algebra while another is enrolled in calcu-
lus). Therefore, each child in the sample can contribute up to six observations, one for each grade

7Our results are substantively unchanged if we use multiple survey waves and a more limited set of questions.
8In the early round of kindergarten readiness assessments, teachers administered a readiness checklist of academic

and behavioral skills designed by the state Department of Education with a dichotomous ready/not-ready measure
recorded in state records. In the later round of kindergarten readiness, the state universally implemented the DIBELS
assessment aimed at measuring early pre-literacy skills. DIBELS is a discrete measure that we dichotomize using the
approach described in Figlio et al. (2013) so that the percentage identified as kindergarten ready corresponds to the
percentage in the later assessment. In our analysis sample, the birth cohorts which took the kindergarten readiness
assessment are those born between 1994 and 1996 (kindergarten checklist) and those born in 2000 (DIBELS).

9Kindergarten attendance in Florida is not mandatory but it is heavily subsidized and 95.8 percent of children in
school records whom we observe in grade one also attended kindergarten. In our estimation sample, this fraction is
89.9 percent.
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observed. For brevity we average the math and reading test scores but we present main results split
by reading and math in the Appendix Table A2. We also average the test scores across grades but
the results for individual grades are presented in Figure 1.

Information on disability and gifted status comes from school records, and is based on mutually
exclusive categories. A child may have multiple disabilities and we observe all of these but we focus
our analysis on what is defined in the data as a primary exceptionality. We divide disabilities into
three groups: cognitive, behavioral, and physical, and when we estimate the effects for one of the
sub-types we always compare it to individuals without any disability.10 Gifted status is defined by
Florida Department of Education as “one who has superior intellectual development and is capable
of high performance”, which means an intelligence quotient of at least two standard deviations
above the mean on an individually administered standardized test of intelligence. For both of these
outcomes, however, it is not enough to demonstrate disability or high intelligence, yet parents need
to actively seek Individualized Education Plan (IEP) for their child. In that, both classifications
are often the result of parent and teacher conferences that culminate in drafting such a plan and
assigning child to appropriate disability/gifted group that we observe in our data.

For a limited set of cohorts who complete compulsory schooling in our data range, born in years
1992 and 1993, we also observe high school completion and their coursework in middle and high
school. In this subset of observations, however, we cannot link siblings, and thus we are restricted
to August vs. September comparisons of singleton births more generally. We define four high
school graduation outcomes: graduating with a standard diploma, graduating with any diploma,
not graduating on time but remaining in schooling, and not graduating on time and dropping out.
The distinction between the two diploma types is that in the former case student graduates on time
within four years, fulfilling all the requirements set out by Florida Department of Education, while
in the latter group we include both standard diploma as well as GEDs, special diplomas for students
with disabilities, and diplomas for other students who achieved a somewhat less rigorous set of
coursework requirements. Therefore, the latter set includes diplomas with lower ability requirements.
In addition to graduation outcomes, we also observe elective coursework for children in this sample.
In middle school these are advanced and remedial courses in mathematics and reading, while in
high school these include advanced placement (AP) courses. In the latter case, we can distinguish
between following subjects: mathematics, English, science, social sciences and computer science.

We start with documenting demographic differences between the full population of births and
the set of families whom we include in the empirical analysis (Table A1). First, it is worth noting
that August and September births do not appear to differ substantially from all Florida births
(columns 1 and 2) suggesting that seasonality in birth characteristics might be less of a problem in
this analysis as compared to some other studies. That said, these averages may still mask important
heterogeneities. Comparing columns 2 and 3 reveals the cost of only being able to utilize students
attending public schools and remaining in these schools until at least third grade, where we first
observe their test scores, as the sample used in the analysis is negatively selected compared to full
population of births. Children observed in public schools are more likely to be African-American
(25.8 percent vs. 22.4 percent), less likely to have college educated (15.2 percent vs. 20.1 percent)
or married (60.7 percent vs. 65.2 percent) mother and more likely to utilize Medicaid payments
during birth (50.8 percent vs. 45.1 percent). Most of these differences are due to the fact that more
affluent families are more likely to send their children to private schools or leave the state than are

10Cognitive disabilities include: educable mentally handicapped, trainable mentally handicapped, language im-
paired, intellectual disability, profoundly mentally handicapped and developmentally delayed. Behavioral disabilities
include emotionally handicapped, specific learning disabled, severely emotionally disturbed and autistic. Physical dis-
abilities include orthopedically impaired, speech impaired, deaf or hard of hearing, visually impaired, hospital/home
bound, dual sensory impaired, deaf and traumatic brain injury.

6



less affluent families, rather than any substantial additional selection occurring between school start
and third grade.

More to the point of the present paper, it is also the case that fewer September-born children
than August-born children are enrolled in public school at least through third grade. If the “miss-
ing” September children have particularly favorable or unfavorable academic achievement potential
it could bias our school starting age estimates. The August-September gap in demographic char-
acteristics among the full population and children included in the analysis is similar across most
dimensions except for maternal education and poverty. On the other hand, even these differences
are small and never exceed five percent of the mean value for a given characteristic.11 That said,
in Section 3 below we formally document these potential selection issues and carry out a bounding
exercise to determine the degree to which they might influence our conclusions.

2.2 Methods

As mentioned above, it can be challenging to estimate the effects of school starting age, because a
student’s age when entering primary education can be manipulated (via birth timing and/or red-
shirting) and may be correlated with family background characteristics. It has been shown that
seasonal birth rates (which affects age relative to a cutoff) may vary based on family background
characteristics (Buckles and Hungerman 2013). Research has also shown seasonal patterns in birth
outcomes, mental health, neurological disorders, adult height, life expectancy, intelligence, and in-
come (Currie and Schwandt 2013). There is evidence that conditions at conception, such as in utero
exposure to illness/disease (Currie and Schwandt 2013) or nutrient deprivations due to seasonal
nutritional intake (Barker 1990), may have an effect as well. Relatedly, we also know that parents
can manipulate when children start school by redshirting. These redshirted children tend to be
more likely male, white and from higher socioeconomic statuses (Bassok and Reardon 2013). As
a consequence, comparing children based on their age when starting school is often fraught with
omitted-variables concerns, and even results from studies with sufficient numbers of observations to
make use of regression discontinuity evidence – say, comparing September births to August births
in locales with a September 1st cutoff for school entry – may still be subject to omitted-variables
bias due to endogenous birth timing.12

To address these challenges we proceed with the following empirical specifications. First, we
begin with a simple model of the relationship between student outcomes and month of birth. In the
main specification we restrict our attention to the August-September comparison, where Septem-
ber born children are about one year older than August born children at the time of school entry.
For each child we only know year and month of birth, and thus we cannot preform more stan-
dard regression-discontinuity analysis with daily-level running variables. Therefore, we estimate the
following equation:

Yi = �Septi + �Xi + "i (1)
11In addition, comparing columns 3 and 6 in Table A1 demonstrates that the sample of siblings observed in Florida

schools is modestly positively selected as compared to all students born in August or September and attending public
schools. Children with siblings in our sample are more likely to have mothers who are college educated (19.9 percent
vs. 15.2 percent) and married (63.4 percent vs. 60.7 percent) at the time of birth.

12Another challenge to estimate the effects of school starting age, summarized by Angrist and Pischke (2008) as
a “fundamentally unidentified question” is that there is no way to decompose the effect of school starting age on an
outcome measured during the schooling process into its three separate components: effect of a child’s age at school
entry, effect of their age at the time of outcome measurement, and the effect of their age relative to their peer group.
But it is also important to note that this deterministic link between the first two components disappears in a sample
of adults past their schooling career as found in research such as Black et al. (2011).
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where Yi is one of the outcome variables for child i as defined in Section 2.1: kindergarten
readiness; test scores in grades 3 to 8; being redshirted; being retained in an early grade; disability
status; gifted status; middle and high school course selection; and high school graduation. Septi is an
indicator variable for being born in the month of September; Xi contains mother and child control
variables including year of birth dummies, maternal education, marital status at birth, medicaid
paid birth, maternal race and ethnicity, child’s gender, log birth weight, gestational length, start
of prenatal care in first trimester, and indicators for congenital anomalies, abnormal conditions at
birth and maternal health problems; "i is the error term. In order to maintain as balanced sample
as possible we estimate redshirting and retention behaviors for the population where we also observe
test scores.13

In Equation 1 we do not include any demographic controls since we also present heterogeneity
analyses utilizing these covariates. However, we do control for birth endowments of children as they
may vary within a year (Currie and Schwandt 2013). The parameter of interest, �, is the causal
effect of age under the assumption that the unobservables are not correlated with month of birth.
The exogenous variation in school starting age comes from variation in month of birth (August vs.
September) and the administrative school starting rule in Florida (September 1st), thus generating
a fuzzy regression discontinuity design. The identifying assumption can be then translated into
the following statement: children born in August and September are identical on observable and
unobservable characteristics except for the age at which they begin schooling. In the case of Florida,
akin to papers cited above, we also find that being born in September is correlated with observable
family characteristics e.g. better educated and Hispanic mothers are less likely to have September
births while mothers with Medicaid births are more likely to deliver in September. These differences
are generally small – effect sizes between 0.2 percent for the African-American indicator and 3.8
percent for the college graduate mother indicator – but to further alleviate the endogeneity concerns
we also propose a sibling fixed effects strategy.

In order to implement the fixed effects strategy, we first restrict the sample to families where we
observe at least two siblings in our data. Then we further require that these siblings are first two in
the family and both are born in either September or August. The estimating equation becomes:

Yij = �j + �Septij + �Xij + "ij (2)
where Y , Sept, X and " are defined as in Equation 1 but are now additionally subscripted with

j, which indexes families. In Equation 2, �j is a mother fixed effect that accounts for observable
and unobservable characteristics that are shared by siblings and do not vary over time. Additional
control in vector X is an indicator for being second born and the standard error " is now clustered
at the mother level for all outcomes. The identifying variation comes from the fact that one of the
siblings is youngest and one is the oldest in their grades at school entry. Although an improvement
over simple OLS, the potential endogeneity concerns that this strategy cannot resolve are any form
of cross-sibling reinforcing/compensatory behavior or sibling spillovers (Black et al. 2017; Landerso
et al. 2017a; Qureshi 2017). We directly investigate the former one by examining redshirting and
retention. The latter is beyond the scope of this analysis; however, since we find remarkably similar
academic achievement estimates across different samples and estimation strategies we suspect that
this issue is an unlikely source of bias.

13We do not impose this restriction on kindergarten readiness because we do not have data for cohorts 1997 to
1999. The results are similar when we estimate the effects on redshirting, retention and test scores for all children for
whom we can observe kindergarten readiness.
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3 Results

3.1 Short- and medium-run outcomes

Table 1 documents the effect of school starting age on test scores, redshirting and retention for a
variety of samples and two specifications. In each regression we compare September vs. August
born children without (odd numbered columns) or with controls (even numbered columns). These
additional covariates are described in Section 2.2. The main take home point of this table is that
the point estimates are very similar regardless of the exact econometric specification used, which
validates our regression discontinuity design. Furthermore, they are very similar for test scores but
differ for the other two outcomes across different samples. In particular estimates for redshirting
become more negative while for retention less negative as we move from sample of singletons (Panel
A) to sibling sample (Panels B and C), and then further to siblings with the same parents (Panel
D). These latter samples have higher SES which is evident not only when comparing mean test
scores between Panels A and D but also by increasing redshirting and declining retention rates
(Schanzenbach and Howard 2017). This finding and difference in estimates between test scores and
remediation techniques as well as opposite movement of redshirting and retention preview our main
heterogeneity result.

Returning to test score estimates, in Column 1 of Panel A we see that the September births
score 0.197 SD higher than their August counterparts, and this estimate increases by only 0.005
when we add health and demographic controls.14 In this analysis test scores are pooled across
six grades and averaged for mathematics and reading, but in Figure 1 we show that estimates are
about two times larger in grade 3 than they are in grade 8. However, even the latter at 0.158 SD
is economically and statistically significant irrespective of exact econometric specification. Table
A2 further documents that differences are modestly larger in reading than in mathematics. We
next move to a specification in which we compare August and September births within the same
family, by controlling for family fixed effects. We first confirm, in Panel B, that the OLS regression
discontinuity estimates are essentially identical if we focus on the set of observed siblings relative to
the full set of singletons; the point estimate is 0.216 SD for this sample, similar to the 0.197-0.202
SD estimated for the full population of singletons. When we actually control for family fixed effects
in Panel C, we find the results are extremely similar – ranging from 0.216-0.218 SD – and when
we choose an even more restrictive comparison, in which we estimate sibling fixed effects regression
discontinuity models when both parents are the same for both siblings (Panel D), the estimates
remain essentially unchanged, ranging from 0.222-0.223 SD.

In summary, while one might have been concerned that unobserved family characteristics for
children born in September versus August might be driving observed differences in outcomes for
September versus August births, the results from Table 1 make it clear that controlling for family
characteristics and behavior does not substantially affect the estimated relationship between school
starting age and test scores. We conclude ex post from this analysis that much of the regression
discontinuity estimates in the literature are most likely not contaminated with quantitatively im-
portant family selection issues. The estimates for redshirting and retention are affected based on
the estimation sample used. However, this difference is driven by substantial heterogeneity in the
effects of being born in September vs. August for these outcomes across SES spectrum. For test
scores, we do not detect such heterogeneity.

14Appendix Table A3 documents the OLS, reduced form and instrumental variable (using an indicator variable
for September as an instrument for age at test) estimates for test scores based on the sample of singletons. The
instrumental variables are not our preferred specification as the instrument likely does not satisfy the monotonicity
assumption due to differential redshirting documented in Table 1 (Barua and Lang 2016). We provided them in the
Appendix to give readers a sense of the difference in magnitudes between the IV and reduced form estimates.
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In Section 2.1 we have noted that our sample consists only of children who attend public schools
in Florida and stay in the system at least until third grade, the first time we observe test scores.
Since this sample is positively selected and the selection correlates with being born in September
(Table A4) the estimates presented in Table 1 may be biased.15 To address this problem we propose
a bounding exercise where we impute either 5th or 95th percentile of tests scores to students whom
we either do not match to public schools or do not observe with test scores in public schools (for
example because they leave the public schools between kindergarten and commencement of testing).
These bounds are presented in square brackets in Table 1 and suggest that our preferred estimates
are not substantively biased due to selection. The range of the bounds is also no greater than 6
percent of a standard deviation, that is about a fourth of the estimated effect in the most conservative
approach.

In Figure 2, we examine the relationships found in Table 1 in more depth. In particular, we
display the point estimates which come from a separate month-to-month comparisons using our larger
sample of singletons on test scores, as well kindergarten readiness, early retention, and redshirting.
We have not included kindergarten readiness estimates in Table 1 because due to data limitations
these cannot be estimated in siblings sample. In Panel A we observe that, regardless of which
month-to-month comparison we employ, the older children of the pair are more likely to be ready
for kindergarten at the start of formal schooling. However, in all cases except for the September
versus August comparison, the estimated differences are small, albeit often significantly distinct from
zero. On the other hand, in the case of the September versus August discontinuity, the difference is
dramatically larger than seen elsewhere – an older-child advantage of 10 percentage points – over five
times higher than the second-largest difference. For test scores, reported in Panel B, the September
versus August estimate is 0.17 SD larger than second-largest difference (0.20 SD vs 0.03 SD).

Panels C and D of Figure 2 show the differential effects of being older on the probability of being
redshirted (Panel C) or being retained in early grades (Panel D). Here we find that the September
versus August difference in redshirting rates (5 percentage points) is more than double the next
largest month to month comparison. Parents redshirt children born in both July and August but
roughly twice as many August babies are redshirted than those born in July. Regarding early-grade
retention (Panel D), the point estimate for the September versus August comparison is -0.152 and
dwarfs any of the month-by-month comparisons. Therefore, Figure 2 gives us much confidence that
our fuzzy regression discontinuity design is accurately picking up the important age differences in
our data.16

We next move to other educational and health outcome measures. In Table 2 we explore the
effect of school starting age on disability and gifted status. Columns (1) and (2) show effects on any
type of disability, and we find that September births have 4.6 percentage points lower probability
of having disability label than their August counterparts. This result is confirmed in sibling fixed
effects analysis and is invariant to including additional controls. Decomposing the effect by disability
type (columns (3) to (8)) we show that in singletons sample the estimates are largest for behavioral
and physical disability while in sibling fixed effects analysis these are only statistically significant
for the former group.17

15We formally document this selection in Table A4, where the dependent variables are either being matched between
birth and public school records or being observed with third grade test scores conditional on being merged to public
school records. Since the sibling match occurred via school records, this particular analysis can only be done for the
latter selection. Regardless of the specification, we find that September born children are about 2 percentage points
less likely to be merged between birth and school records and are between 0.3 and 0.6 percentage points more likely
to be included in the empirical sample conditional on being merged between the two data sources.

16Sibling fixed effects results for panels B to D are qualitatively very similar but have larger standard errors due to
decreased sample sizes. This is consistent with findings reported in Table 1

17 Sample sizes vary by disability type because we always compare children with a given disability type to healthy

10



The exact mechanism behind the age effect in disability is unclear to us. On the one hand, it
may be due to mislabeling cognitive and non-cognitive immaturity among young for grade children
as disability symptoms. These children are biologically younger at school entry, but they are held
to the same academic standards as their older counterparts. Thus, we might expect differential
classification rates by age if educators and parents pursue a disability assessment for their children
who academically achieve at lower levels. On the other hand, we cannot rule out a direct effect of
being young for grade on disabilities, especially behavioral ones, where a child could struggle due
to peer pressure and relative ranking among their classmates. Irrespective of the exact cause our
estimates are of policy relevant magnitude e.g. result in column (2) of Panel A implies effect size of
19 percent. They are also concordant to the literature on ADHD over-diagnoses in young at school
entry children (Elder 2010; Evans et al. 2010; Morrow et al. 2012) but bolster these findings with
within-family design and health-at-birth controls, both of which could be important econometrically.
Finally, in columns 9 and 10 we further explore a potentially positively perceived IEP outcome -
gifted status. These results suggest that old for grade students are more likely to be labeled as
gifted, which again could be either due to superior intellectual development or the desire of parents
to label their over-performing children.

For cohorts born in 1992 and 1993, where we cannot implement the sibling fixed effects design
but where the children are old enough to conclude compulsory schooling, we can observe additional
outcomes. Table 3 explores these medium-run outcomes that to our knowledge have not been
explored in the literature thus far. We estimate the August-September difference in taking advanced
or remedial courses in middle school or Advanced Placement courses in high school. Advanced
courses such as ones offered in the Advanced Placement Program were designed to provide high school
students a way to learn university level material while in high school and serve as an important signal
in college admissions (Klopfenstein and Thomas 2009). Furthermore, there are studies showing that
passing AP exam scores are strong predictors of success at university (Hargrove et al. 2008; Keng
and Dodd 2008).

In Table 3 we observe a large August-September difference in these non-test score outcomes.
In particular, we find negative effects for remedial courses in middle school. Conversely, we find
positive effects of having September birth on middle school advanced courses and all AP courses
except computer science, which has very few students taking this class overall. Adding a large variety
of demographic and health controls in Panel B makes little difference in terms of magnitudes and
significance. These large differences may be surprising given that some of the previous literature has
suggested that the age effects dissipate quickly and are not economically significant in later years
(e.g. Elder and Lubotsky 2009).

Our final medium-run outcomes relate to high school graduation. We coded four variables in this
domain: graduated and received a standard diploma, graduated and received any diploma (including
a GED degree), not graduated but still in school more than five years after starting grade nine, and
not graduated but has dropped out of school. In Table 4, odd numbered columns do not include any
controls while even numbered columns control for health and demographic covariates. The August-
September difference for graduating and receiving a standard diploma is positive and statistically
significant regardless of specification, however, we do not find any other consistent results across the
additional outcomes. Overall, our high school graduate findings are inconsistent with findings from
Dobkin and Ferreira (2010), Cook and Kang (2016), Hemelt and Rosen (2016) and Tan (2017). This
can be potentially explained by two opposing forces in action at the same time when measuring the
August-September difference – both that the September-born students have a cognitive advantage
over their August counterparts (as can be seen proxied by their test scores) and also that they

children where both groups are born either in August or September.
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have the ability to dropout of high school for a longer period of time due to their increased age. It
appears that in our sample at least for the most positive outcome, unlike in some previous research,
the September-born children’s increased cognition is the dominating force.

3.2 Heterogeneity

A majority of the previous research has offered few and conflicting insights in terms of heterogene-
ity in the August-September differences. For example, some papers find larger differences for girls
(Datar 2006) while other for boys (Puhani and Weber 2007; McEwan and Shapiro 2008). Similarly
there is evidence that effects are larger among higher SES families in some contexts (Elder and
Lubotsky 2009; Tan 2017) but in lower SES families in others (Datar 2006; Black et al. 2011; Cook
and Kang 2016; Hemelt and Rosen 2016). Because of the contradictory results in the literature ex-
amining effect heterogeneity, especially using large-scale linked administrative data, is important as
it may provide further insights on these conflicting previous results. We have already hinted in Sec-
tion 3.1 that heterogeneous effects may further depend on the outcome under scrutiny. The Florida
data are particularly suited to explore heterogeneity in great detail, as these include an incredibly
detailed information on a highly diverse population with over 20 percent of African-American, His-
panic and high school dropout families. In the analysis that follows, we investigate the degree to
which estimated effects of school starting age vary by race/ethnicity, maternal education, family
poverty, birth weight, gestational age, school quality, and sex. In particular, the interaction between
initial endowments and school starting age has never been studied before to our best knowledge,
and appears crucial from the policy perspective given the hypothesized interaction between early
childhood inputs (Cunha et al. 2010).

We present the heterogeneity results in Figures 3-10. In each figure, the bar or dot represents
a point estimate and it includes a 95 percent confidence interval (whiskers) from our September
versus August singletons regression discontinuity comparison.18 As seen in Figure 3, Panel A, the
September-August difference in kindergarten readiness is much lower for high-SES families than for
low-SES families (whether measured by family income proxied by Medicaid payment or maternal
education groups); and much lower for white families than for minority families.19 These are exactly
the groups that also experience higher redshirting rates. On the other hand, differences in readiness
are comparatively low for higher-birth weight infants relative to lower-birth weight infants or full-
term infants relative to premature or post-term infants suggesting no interaction between initial
health endowments and age at the start of education (see Figures 4 and 5).

Remarkably, as seen in Figures 3-6, the estimated effects of school starting age on test scores are
highly similar across a wide range of SES groups as well as a wide range of initial infant health, or a
wide range of school quality.20 These findings indicate that school starting age affects children’s test
scores by essentially the same amount – despite the fact that different groups of families have chil-
dren with different average health at birth or academic achievement and are differentially proactive
regarding how they attempt to remediate their young-for-grade children.

Differences in early family remediation behaviors can help to explain why we document consid-
erable heterogeneity in kindergarten readiness but not in third grade test scores by different family

18Our sibling fixed effects heterogeneity results are again qualitatively similar; however, due to small sample sizes
we often lose statistical power. In order to facilitate comparability in heterogeneity estimates we drop all controls in
these analyses but as documented in Section 3.1 they do not matter for our average estimates.

19Elder and Lubotsky (2009) also find significant heterogeneity during the fall of kindergarten but they find larger
age effects for the children from higher socioeconomic status families, which is at odds with our estimates.

20We are unable to explore differences in kindergarten readiness or redshirting practices stratified by school quality
as these two outcomes are measured at the very beginning of schooling, and thus cannot be affected by the quality of
school that a child attends in the first grade.
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background groups. In that, we postulate that remediation behaviors might be partially responsible
for the presence of heterogeneity at the start of school but not in subsequent test scores as we observe
that high-SES families are more likely to redshirt their August-born children, while children from
low-SES families are more likely to be retained in early grades. Importantly, while redshirting has
the potential of affecting both kindergarten readiness and subsequent test scores by the nature of
school retention it happens only after a child starts schooling, and thus cannot have an effect on
kindergarten screening results. This difference in timing is consistent with the pattern observed in
the data, and the two approaches to remediating young for grade children may be the cause of the
sharply reducing SES-age profile for August-born versus September-born children by third grade.
Later in this paper we provide some suggestive evidence regarding the potential efficacy of these
remediation strategies.

Exploring heterogeneity further, we look to the student’s sex. Boys are redshirted more often
than girls (Bassok and Reardon 2013; Schanzenbach and Howard 2017), implying that many families
think that school starting age is more relevant for their sons than for their daughters. In Figure 3, we
graph the point estimates for males and females in our sample. In terms of kindergarten readiness,
we find that September males have a larger age advantage than September females as compared to
August births. However, in terms of averaged test scores, we are unable to statistically distinguish
between male and female estimates – they are equally as big, around 0.2 SD. At the same time,
there are significant gender differences in behaviors of parents and schools in terms of redshirting
and retention. Male August babies are significantly more likely to be redshirted than female August
babies, perhaps due to “conventional wisdom” regarding gender differences in maturity, or perhaps
due to the fact that August-born boys are somewhat less ready to start school than are August-born
girls. August-born boys are also differentially more likely to be retained in early grades (relative to
their September-born counterparts) than are August-born girls.

We further examine the stratification by socioeconomic status and gender and provide each
heterogeneity estimate separately for boys and girls (see Autor et al. (2016a) and Autor et al. (2016b)
for an in depth exploration of gender-SES gaps in Florida). These results can be found in Table A5.
In Panel A, we find that across all categories, the kindergarten readiness gap between September
versus August-born children is larger for males than females. When examining the average test score
gap in Panel B, we find that the test score gap is similar between males and females except for the
children with college educated mothers and mothers who were not on Medicaid. In these cases, the
test score gap is actually larger for females. We find that the August-born males are redshirted and
retained more in all categories but the magnitude of redshirting is substantially higher for the boys
with mothers who are college graduates, non-Medicaid, or white. These facts together indicate that
the increased prevalence of redshirting might help to boost test scores as we have seen that these
males are also the children that have a smaller September-August test score gap.

We next move on to our other medium-run outcome measures: disability and gifted status (Figure
7); middle school course enrollment (Figure 8); high school course enrollment (Figure 9); and high
school graduation outcomes (Figure 10). In each of these figures, we consider three cuts of the data:
by education levels of the mother; by race/ethnicity; and by gender. We are also able to investigate
differences by income for disability and gifted status but not for the other outcomes as the income
measure is not available for those particular cohorts. We do not find much of a heterogeneity across
birth weights, gestational age, and school quality, and thus for brevity we do not report these results.

In Figure 7 we find a striking education gradient and corresponding income gradient where higher
SES families seem to be able to mitigate some of the school entry age effect on disability identification,
and these are especially pronounced for behavioral problems which may be particularly affected by
relative age effects. Furthermore, we find evidence for gender differences, with males being more
elastic, which again is particularly pronounced in the behavioral domain. These heterogeneity results
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are similar to what has been documented for ADHD by Evans et al. (2010) and Elder (2010), and
may be due to differences across these groups in parent’s demand for disability assessment and
identification or by differential access to medical care and school psychological resources (Currie and
Gruber 1996). At the same time, we find no statistically significant differences in terms of gifted
status by education, income, race/ethnicity, or gender in Figure 7, and we think that if “labeling
desire” would be a dominating effect, we should then also observe a gradient in this potentially
positive IEP measure.

Turning to course enrollment, we find SES gradients in both middle school (Figure 8) and in high
school (Figure 9). Although, we do not find much of a gender gap in middle-school there is a gap
between boys and girls in all AP courses except for math and computer science, with females having
larger August-September differences in AP enrollment than males. On the other hand, differences
based on socioeconomic variables are generally more pronounced in middle school rather than in high
school. Finally, we do not find statistically significant heterogeneous effects of the school starting
age on our high school graduation outcomes (Figure 10), however, these are relatively imprecise and
in Panel A, for instance, the difference among children of college educated mothers is visibly smaller
as compared to other education groups.

Summarizing our heterogeneity analysis, we observe that there exists very little heterogeneity in
the August-September difference on test scores across a substantial array of different child, family,
and school dimensions, despite pronounced age effects in kindergarten readiness. We do, however,
find heterogeneity in other non-test score outcome measures such as disability identification and
course selection in middle and high school. It seems that the outcomes that display heterogeneity
are measures that can be influenced the most by parental involvement or intervention, but this
relationship is speculative at best. Moreover, these findings do not provide evidence regarding
which remediation mechanism, if any, leads to heterogeneous effects of school starting age – just
that heterogeneity in estimated effects exists for some outcomes and not for others. Importantly
though, we are able to investigate a broad range of outcomes including some that have never been
studied before. In the following sections of this paper we attempt to uncover whether school policies
or remediation efforts could be responsible for some of these patterns of results.

3.3 Interaction between school policies and school starting age

One of the more challenging aspects of the school entry literature is that policy recommendations
are generally hard to come by despite the stark differences in outcomes of children who enter school
early versus late. It is difficult to imagine the administration of a school system in which there were
no school entry cutoff dates that causes the age distribution of children at the entry. It is possible
to decrease these age differences, however, by having a more staggered school entry such that new
primary aged students enter school either in the fall or in the spring depending on birth dates.
This requires multiple classrooms of the same grade in each school, which is not feasible in many
locales, and which might make other class-composition policies harder to execute. In addition, there
exists much speculation on the exact mechanisms at work behind the measured age differences.
These include the age effects being entirely driven by differences in skill accumulation prior to
kindergarten (Elder and Lubotsky 2009), or driven by differences in actual biological age at test
time outweighing the position in the age distribution (Black et al. 2011; Cascio and Schanzenbach
2016), or driven by differences in educational trajectories due to individuals in authority positions
such as teachers/coaches mistaking maturity with ability (Bedard and Dhuey 2006), or driven by
these individuals in authority positions relating their evaluations of a child’s development to the
child’s location in the age distribution (Elder 2010).

Because changing the administrative need for school entry cutoff dates seems unlikely, we explore
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other common school policies to understand if there are any interactions between these policies and
the magnitudes of the estimated effects of school starting age. In Table 5, we examine twenty different
school policies that we observe occurring in Florida primary schools to understand whether any of
these policies either mitigate or intensify the estimated September-August difference. We utilize the
information on school policies and practices by interacting the presence of a given policy/practice
with an indicator for September birth and further controlling for both dummy variables. This
interaction term describes whether August vs. September gaps in test scores are larger or smaller
in schools that have and do not have a given policy in place. Since our first achievement measure is
based on performance in grade three we use third grade test scores as outcomes and policies that a
child experiences in grade one as treatment.21 Each row includes estimates using a different school
policy. Column (1) analyzes each policy one at a time; whereas column (2) jointly includes all policy
interactions and indicators. Panel A focuses on policies relating to before and after care. Panels
B and C relate to schedules and staffing and to extending overall instructional time, respectively.
Panel D measures class size whereas Panel E includes policies in place to improve the achievement
of low-performing students.

What is notable is that only three policies consistently influence the estimate of the September-
August difference: block scheduling, summer school requirement for grade advancement, and class
size. Block scheduling refers to the practice when pupils have fewer but longer classes each day.
Summer school for grade advancement is an additional coursework requirement for low-performing
students to advance to next grade. It is worth noting that both policies are fairly common in
use, at 36.5 percent and 58.9 percent respectively, and both exacerbate rather than ameliorate the
August-September gaps. Furthermore, we also find that increasing class size is associated with larger
achievement differences between old and young for grade students. This makes sense to us because
larger classes are more likely to be heterogeneous, and thus putting young for grade children at
relatively bigger distance in ability or maturity as compared to their peers. Overall, we view these
estimates as not suggestive of any particular method that could alleviate the age-for-grade disparities
among children. In Section 3.4, we move from strictly school level policies to remediation practices
that can be partially impacted by parental decisions.

3.4 Exploratory analysis: Potential consequences of redshirting and early grade
retention

Providing causal evidence on the effect of redshirting is difficult, as children who are being redshirted
undoubtedly come from families that are different on both observables and unobservables. For exam-
ple, in our sample, families with college-educated mothers are more likely to redshirt their children in
comparison to families where the mothers did not complete college education. Thus, it is challenging
to disentangle the act of redshirting from the observable and unobservable qualities of these families.
Based on the heterogeneity studied in Section 3.2, we concluded that redshirting might potentially
increase the test scores of those being redshirted - primarily males from higher socioeconomic status
families. Below we provide additional associational evidence on this relationship.

Schools and school districts have considerable leeway on the rules and regulations set in their
district regarding who is allowed to be redshirted. Some districts allow for large levels of redshirting
whereas others do not. Also, different “parenting cultures” and even daycare prices may affect
redshirting practices which in turn may affect redshirting levels across school districts and within
school districts over time. As a consequence, across the 65 (out of 67 total) county-level school

21As explained in Section 2.1 we use the initial survey responses from school year 1999-2000 as a permanent feature
of the school and assign it to all their first graders over time. To the extent that school policies change over time our
estimates are more noisy that if we were to observe policy variable every school year.
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districts in Florida where we could construct this measure, redshirting rates vary from 0 to 8.5
percent, and August-birth redshirting rates range from 0 to 50 percent.22 School districts vary
dramatically in terms of early-grade retention rates as well. Early-grade retention rates range from
9.1 to 48.3 percent across the 65 school districts, and early-grade retention rates for August births
range from 0 to 100 percent.23 This variation is not due to observed background differences: if
we were to predict redshirting and early-grade retention using the variables observed on a child’s
birth certificate, we would have only expected to see a range of 1.0 to 2.6 in county-level differences
in redshirting rates and a range of 14.4 to 26.7 in county-level differences in early-grade retention
rates.24 Finally, districts that pursue one policy or practice do not necessarily pursue the other
policy or practice. For example, district-cohort correlation between redshirting and retention rates
is 0.657.

In Table 6, we examine the relationships between school district-level differences in the rates
of redshirting as well as early-grade retention and test scores. We collapse the data at year of
birth⇥school district⇥September birth level. In the first column of Panel A, we regress average test
scores on the fraction of children redshirted, an indicator for a September birth and the interaction
of these two variables. We also include school district and cohort fixed effects and cluster our
standard errors at the school district level. We find that the percent redshirted is positively related
to the average test score level but that the interaction between percent redshirted and being born in
September is negatively related. This indicates that the school districts that have higher proportions
of redshirted children have lower September/August test score gaps. In the first column of Panel B,
we regress average test scores on the fraction of children retained by the school in early grades. Here
we find that retention is negatively related to test scores and that the interaction is also negatively
related. This implies that school districts that have higher levels of retention in early grades also
have lower old versus young test score gaps. This evidence is necessarily only suggestive because
despite the school district and cohort fixed effects there may still be unobservable variables that affect
both the level of redshirting/retention and the level of test scores. Nonetheless, this district level
evidence paired with previous individual level analyses gives us confidence to lean in the direction
of saying that school districts where redshirting and early grade retention are more prevalent also
have smaller September-August gaps in test scores.

We further investigate this question by considering heterogeneity in whose test scores are differ-
entially related to school district-level redshirting and early grade retention rates.25 The remaining
columns of Table 6 help to tell this story. While only correlational in nature, we find that in
school districts where one remediation strategy is especially prevalent, September-August perfor-

22We exclude two counties from this analysis because we do not observe children’s place of residence at birth for
those born in 1994 and 1995 in these counties. These two counties constitute 1.5 percent of the full population of
births in years 1996 to 2000. Our results are fundamentally unchanged when we use all 67 school districts and limit
birth cohorts to 1996 to 2000, when we observe location of birth for the entire state.

23Some of the school districts in our sample are very small and have less than 10 students born in a given year and
month. If we restrict our sample to counties with at least 50 August births in each year we are left with 29 school
districts, and then the August redshirting rates range from 1.3 to 18.1 while August early retention rates range from
12.1 to 44.3.

24We regress at individual level indicator for being redshirted or early retained on infant gender, month and year
of birth dummies, birth weight, gestational age, dummies for congenital anomalies and abnormal conditions at birth
as well as on mom’s race, ethnicity, education, foreign born status, medicaid paid birth, health problems and start
of prenatal care in first trimester. Then, we use coefficients from this regression to predict values of the dependent
variables and collapse them at school district (65 districts) and year level (7 years).

25Here, we limit our analysis to school districts with at least five children in each cell (year of birth by September
birth heterogeneity groups). This restriction yields unbalance repeated-cross section of observations. Retention
results are similar when we impose full panel restriction across heterogeneity dimensions and years while the results
for redshirting become less precisely estimated.
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mance gaps tend to be lower for the demographic and socioeconomic groups that in general are less
likely to experience that type of remediation. In the case of redshirting, the largest reductions in
the September-August performance gaps associated with district-level redshirting rates are for chil-
dren with high school dropout mothers and for children who were born in poverty, as indicated by
Medicaid-funded births. In the case of early grade retention, the largest reductions in the September-
August performance gaps associated with district-level early grade retention rates are for children
with high school graduate and college graduate mothers; for those whose births were not funded by
Medicaid; and for white students rather than minority students. This pattern of findings provides
further evidence that while redshirting and early grade retention are remediation tools that could
have negative consequences, such as those described by Schanzenbach and Howard (2017), there are
potential vehicles for remediation inside and outside of the school system – especially for groups for
whom the remediation strategy is less frequently used. However, more experimentation and causal
evidence is necessary before we are prepared to make this recommendation.

4 Conclusions

In this paper, we document, using matched administrative data from the state of Florida, the most
robust to date evidence on the short- and medium-run effects of school starting age on children’s
cognitive development. The regression discontinuity approach as well as the month-to-month within
family sibling fixed effects comparison where we control for all the time invariant endowments and
family characteristics show that September born children benefit developmentally in comparison to
August born children. Our test score findings are very similar irrespective of the empirical approach
chosen, which suggests that much of the regression discontinuity estimates in the literature thus far
are most likely not contaminated with quantitatively important family selection issues.

We find heterogeneity in terms of kindergarten readiness along with disability status and middle-
and high school course selection. But we also document a striking lack of heterogeneity in test scores
and high school graduation rates by student, maternal, and school characteristics. At the same time,
we observe different compensatory behaviors targeted towards children from different socioeconomic
statuses who are youngest in their schooling cohort. While the more affluent families tend to redshirt
their children to give them competitive advantage, families that are unable to do this - either due to
lack of awareness or resources - are surrogated by the schooling system, which retains their children
in grades prior to testing. This differential remediation also helps explaining why we find larger
kindergarten readiness gaps for lower SES children that then vanish at the time of testing. Namely,
since low SES children are not redshirted but rather retained there is no scope for retention to affect
children’s cognitive development prior to the start of schooling. Together, both of these mechanism
seem to be equally effective because children coming from different socioeconomic backgrounds end
up at roughly the same educational levels at the time of testing irrespective of the affluence.

We have also explored if particular school policies can ameliorate the September-August cognitive
gaps. We find that the practices of block scheduling and summer school requirements for grade
advancement among low-performing students are associated with larger rather than smaller school
entry age effects. Therefore, these policies should be carefully considered by schools if the goal is to
decrease the magnitude of age effects for their students. We did not find differential influence of any
other policies but smaller classrooms in first grade appear to shrink the achievement gap between
youngest and oldest children in the classroom. Finally, we also explored whether the relationship
between remediation techniques and test scores estimated at individual level translated into policy
relevant district-level variation. We show that the percent of children redshirted is positively related
to the average test score level but that the interaction between the percent redshirted and being
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the oldest in a cohort is negatively related. At the same time, retention is negatively related to
test scores but the interaction between retention and being the oldest in a cohort is also negatively
related. Together, these findings indicate that school districts where redshirting and early grade
retention are higher have smaller relative age gaps in test scores.
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Figures and Tables

Figure 1: Estimates of school starting age by grade
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Note: Sample is based on all singleton births between 1994 and 2000. Each point estimate is based on regression
of test scores in given grade (3 to 8) on an indicator for September birth, and a set of controls. Control variables
include marital status at birth, maternal education indicators, indicator for medicaid paid birth, race and ethnicity
indicators, indicator for gender, cohort dummies, log birth weight, gestational age, indicator for start of prenatal care
in first trimester as well as indicators for congenital anomalies, abnormal conditions at birth and maternal health at
birth. Heteroskedasticity robust standard errors and 95 percent confidence intervals.
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Figure 2: Estimates of school starting age (month-by-month)
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Note: Sample is based on all singleton births between 1994 and 2000. Each point estimate presents month-to-month
comparison with 95 percent confidence intervals. Panel A presents results for kindergarten readiness, Panel B for
pooled math and reading test scores in grades 3 to 8, Panel C for probability of being redshirted and Panel D for
school retention. Kindergarten readiness excludes cohorts 1997 to 1999 due to missing data. Redshirting is defined as
indicator variable that equals to one if a child has a higher than expected, based on date of birth, age at the time of
first observation in school records in either kindergarten or grade one. School retention prior to grade three is defined
as an indicator variable that equals to one if child is observed twice in the same grade. Control variables include
marital status at birth, maternal education indicators, indicator for medicaid paid birth, race and ethnicity indicators,
indicator for gender, cohort dummies, log birth weight, gestational age, indicator for starting prenatal care in first
trimester as well as indicators for congenital anomalies, abnormal conditions at birth and maternal health problems.
Heteroskedasticity robust standard errors in panels A, C and D and clustered at individual level in Panel B.
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Figure 3: Heterogeneity by socioeconomic status and by gender (August vs. September)
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Note: Sample is based on all singleton births between 1994 and 2000. Each point estimate reflects August vs.
September comparison with 95 percent confidence interval. Outcomes are: kindergarten readiness (Panel A), pooled
math and reading test scores in grades 3 to 8 (Panel B), probability of being redshirted (Panel C) and school retention
(Panel D). Black bars present average estimates akin to those in Figure 2; blue bars present heterogeneity by maternal
education, maroon bars present heterogeneity by medicaid status which is proxy for income; orange bars present
heterogeneity by race and ethnicity where minority is defined as either African-American or Hispanic; and olive bars
present heterogeneity by gender. For definitions see Figure 2. No control variables are included. Heteroskedasticity
robust standard errors for kindergarten readiness, being redshirted and retained while clustered at individual level for
test scores.
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Figure 4: Heterogeneity by birth weight (August vs. September)
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Note: Sample is based on all singleton births between 1994 and 2000. Each point estimate reflects August vs.
September comparison for each decile of birth weight with 95 percent confidence interval. Outcomes are: kinder-
garten readiness (Panel A), pooled math and reading test scores in grades 3 to 8 (Panel B), probability of being
redshirted (Panel C) and school retention (Panel D). For definitions see Figure 2. No control variables are included.
Heteroskedasticity robust standard errors for kindergarten readiness, being redshirted and retained while clustered at
individual level for test scores.
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Figure 5: Heterogeneity by gestational age (August vs. September)
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Note: Sample is based on all singleton births between 1994 and 2000. Each point estimate reflects August vs.
September comparison for each gestational age group with 95 percent confidence interval. Gestational age groups are
defined as follows: very preterm - below 32 weeks, preterm - 32 to 36 weeks, early term - 37 to 38 weeks, full term -
39 to 40 weeks, late term - 41 weeks, and post term - above 41 weeks. Outcomes are: kindergarten readiness (Panel
A), pooled math and reading test scores in grades 3 to 8 (Panel B), probability of being redshirted (Panel C) and
school retention (Panel D). For definitions see Figure 2. No control variables are included. Heteroskedasticity robust
standard errors for kindergarten readiness, being redshirted and retained while clustered at individual level for test
scores.
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Figure 6: Heterogeneity by school quality (August vs. September)
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Note: Sample is based on all singleton births between 1994 and 2000. Each point estimate reflects August vs. Septem-
ber comparison for each decile of contemporaneous school quality with 95 percent confidence interval. Outcomes are:
pooled math and reading test scores in grades 3 to 8 (Panel A) and school retention (Panel B). No control variables
are included. Heteroskedasticity robust standard errors for being retained while clustered at individual level for test
scores.
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Figure 7: Effects of school starting age on disability - heterogeneity
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Note: Sample is based on all singleton births between 1994 and 2000. Each point estimate reflects August vs.
September comparison with 95 percent confidence interval. Outcomes are diagnoses with: any disability (Panel A),
behavioral disability (Panel B), cognitive disability (Panel C), physical disability (Panel D), and gifted status (Panel
E). Black bars present average estimates; blue bars present heterogeneity by maternal education, maroon bars present
heterogeneity by medicaid status which is proxy for income; orange bars present heterogeneity by race and ethnicity
where minority is defined as either African-American or Hispanic; and olive bars present heterogeneity by gender. No
control variables are included. Heteroskedasticity robust standard errors.
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Figure 8: Effects of school starting age on middle school course enrollment - heterogeneity
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Note: Sample is based on all singleton births in 1992 and 1993. Each point estimate reflects August vs. September
comparison with 95 percent confidence interval. Outcomes are enrollment in middle school in: advanced mathematics
courses (Panel A), advanced reading courses (Panel B), remedial mathematics courses (Panel C) and remedial reading
courses (Panel D). Black bars present average estimates; blue bars present heterogeneity by maternal education; orange
bars present heterogeneity by race and ethnicity where minority is defined as either African-American or Hispanic;
and olive bars present heterogeneity by gender. No control variables are included. Heteroskedasticity robust standard
errors.
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Figure 9: Effects of school starting age on high school course enrollment - heterogeneity
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Race/Ethnicity: Black/Hispanic White
Gender: Male Female

Note: Sample is based on all singleton births in 1992 and 1993. Each point estimate reflects August vs. September
comparison with 95 percent confidence interval. Outcomes are enrollment in high school AP courses in: any AP course
(Panel A), mathematics (Panel B), English (Panel C), science (Panel D), social sciences (Panel E) and computer science
(Panel E). Black bars present average estimates; blue bars present heterogeneity by maternal education; orange bars
present heterogeneity by race and ethnicity where minority is defined as either African-American or Hispanic; and
olive bars present heterogeneity by gender. No control variables are included. Heteroskedasticity robust standard
errors.
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Figure 10: Effects of school starting age on graduation outcomes - heterogeneity
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Education: HS dropout HS grad College grad
Race/Ethnicity: Black/Hispanic White
Gender: Male Female

Note: Sample is based on all singleton births in 1992 and 1993. Each point estimate reflects August vs. September
comparison with 95 percent confidence interval. Outcomes are: graduating high school with standard diploma (Panel
A), graduating high school with any diploma (Panel B), remaining in schooling even though they should have graduated
already (Panel C), and dropping out of high school (Panel D). Black bars present average estimates; blue bars present
heterogeneity by maternal education; orange bars present heterogeneity by race and ethnicity where minority is
defined as either African-American or Hispanic; and olive bars present heterogeneity by gender. No control variables
are included. Heteroskedasticity robust standard errors.
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Table 1: Effects of school starting age (August vs. September) - comparison of different
econometric models

(1) (2) (3) (4) (5) (6)

September birth 0.197*** 0.202*** -0.050*** -0.049*** -0.151*** -0.152***

(0.004) (0.004) (0.001) (0.001) (0.002) (0.002)

[0.180 to 0.234][0.180 to 0.238]

Mean of Y

Observations

N (children)

September birth 0.216*** 0.216*** -0.069*** -0.069*** -0.129*** -0.130***

(0.025) (0.025) (0.008) (0.008) (0.014) (0.014)

[0.212 to 0.223][0.216 to 0.224]

September birth 0.216*** 0.218*** -0.069*** -0.069*** -0.129*** -0.131***

(0.025) (0.025) (0.008) (0.008) (0.014) (0.014)

[0.212 to 0.223][0.217 to 0.218]

Mean of Y

Observations

N (sibling pairs)

September birth 0.223*** 0.222*** -0.097*** -0.099*** -0.101*** -0.103***

(0.029) (0.029) (0.011) (0.011) (0.015) (0.016)

[0.216 to 0.234][0.220 to 0.227]

Mean of Y

Observations

N (sibling pairs)

Controls X X X

0.133

2,184

1,092

1,470

735

1,470

735735

7,476

0.345 0.048

Panel D: Siblings with same parents  (FE) 

139,211

139,211

0.063 0.028 0.202

0.146 0.037

Retained before third grade

0.177

RedshirtedGrade 3 to 8 pooled test scores

10,910

730,675

Panel A: Singletons (OLS)

Panel B: Siblings (OLS)

Panel C: Siblings (FE)

Note: Full sample is based on all singleton births between 1994 and 2000. All estimates come from August vs.
September comparison. Samples are: universe of singletons (Panel A); siblings born one in each month (Panels B and
C) and siblings born one in each month where the father is know and the same across the two births (Panel D). OLS
regressions in Panels A and B while sibling fixed effects regressions in Panels C and D. Odd numbered columns do not
include any controls while even numbered columns control for marital status at birth, maternal education indicators,
indicator for medicaid paid birth, race and ethnicity indicators, indicator for gender, cohort dummies, log birth weight,
gestational age, indicator for starting prenatal care in first trimester as well as indicators for congenital anomalies,
abnormal conditions at birth and maternal health problems. In siblings models additional control is an indicator
for second born. Standard errors clustered at individual level in columns (1) and (2) while heteroskedasticity robust
standard errors in columns (3) to (6) in Panel A. Standard errors clustered at mother level in remaining panels (B to
D). Square brackets in this Table present estimates from a bounding exercise that we perform to address selection into
the estimation sample discussed in Section 2.1. In each case, we impute either the 5th or 95th percentile of test scores
for children whom we observe without test scores. The imputed percentiles are computed separately for each year of
birth, month of birth and grade in school so that we can account for the fact that later born children do not reach
middle school grades by the end of our test scores data span. In particular, we do not impute test scores in grade 8
for children born in 2000 and in September of 1999; and we do not impute grade 7 for children born in September
2000. In panel A we impute scores for all children born in Florida who do not make it to our empirical sample while
in panels B to D we do it conditionally on being observed in public school because only for this subsample we can
identify siblings. The sample sizes for these bounding exercises are 1,231,791 in panel A; 16,350 in panels B and C;
and 11,362 in panel D.
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Table 4: Effects of school starting age (August vs. September) - High school graduation

(1) (2) (3) (4) (5) (6) (7) (8)

September birth 1.945*** 1.285*** 0.843* 0.324 -0.854** -0.519 0.011 0.195

(0.499) (0.474) (0.481) (0.462) (0.355) (0.349) (0.387) (0.378)

Mean of Y

Controls No Yes No Yes No Yes No Yes

Observations

Graduated Not-graduated

12.5 15.4

Standard diploma Any diploma Remains in schooling Dropout

68.2 72.1

34,785

Note: Sample is based on all singleton births in 1992 and 1993. All estimates come from August vs. September
comparisons. Outcomes are: graduating high school with a standard diploma (columns 1 and 2); graduating high
school with any diploma (columns 3 and 4); remaining in schooling even though they should have graduated already
(columns 5 and 6), and dropping out of high school (columns 7 and 8). Odd numbered columns do not include any
controls while even numbered columns control for maternal education dummies, marital status at the time of birth,
race, ethnicity, nativity, gender, maternal age at the time of birth, cohort dummies, log birth weight, gestational age,
indicator for start of prenatal care in first trimester as well as indicators for congenital anomalies, abnormal conditions
at birth and maternal health at birth. Heteroskedasticity robust standard errors.

36



Table 5: Interaction between school policies and effects of school starting age

(1) (2) (3) (4) (5) (6)

Univariate Multivariable % Yes Univariate Multivariable % Yes 

0.002 -0.006 83.4 -0.003 -0.018 67.9

(0.015) (0.015) (0.012) (0.013)

0.014 0.003 42.5 -0.031 -0.033 2.1

(0.011) (0.012) (0.039) (0.039)

0.026** 0.016 50.0 -0.014 -0.008 17.0

(0.011) (0.012) (0.015) (0.015)

0.019 0.004 85.3 0.013 -0.010 9.6

(0.016) (0.018) (0.019) (0.025)

0.029** 0.023* 36.5 0.002** 0.001* 23.6

(0.011) (0.012) (0.001) (0.001)

-0.001 -0.007 89.0

(0.017) (0.018)

0.012 0.005 54.8 0.004 -0.009 75.6

(0.011) (0.012) (0.013) (0.014)

-0.014 -0.005 96.4 0.025** 0.023* 58.9

(0.029) (0.029) (0.011) (0.012)

-0.007 -0.005 44.7 -0.014 -0.022 79.5

(0.011) (0.012) (0.014) (0.014)

0.006 0.008 32.3 0.043 0.039 4.4

(0.012) (0.012) (0.028) (0.037)

0.017 0.009 48.3

(0.011) (0.013)

Mean of Y

# children

0.121

83,510

Remedial/tutoring 

program

Multi age classrooms

C. Does this school sponsor?

D. What is the average number of students for a regular class?

E. What special measures, if any, does this school take to try to 

improve the performance of low performing students?

A. Does this school sponsor any of the following before-school or after-

school programs?

B. Does this school structure schedules and staff in any of the 

following ways?

Child care programs

Recreational programs

Academic enrichment

Summer school

Year round classes

Extended school year

Saturday school

Require before/after 

school tutoring

Block scheduling

Common preparation 

periods

Subject specialist teacher

Organize teachers into 

teams

Looping

Class size^

Require grade retention

Require summer school 

for grade advancement

Require school 

supplemental instruction

Require Saturday classes

Note: Sample is based on all August and September singleton births between 1994 and 2000. It is further restricted
to individuals attending grade 1 in schools for which we observe complete information on all policies in question
and observed with test scores in grade 3. Outcome variable is test scores in grade 3. We display coefficient on the
interaction between indicator for September birth and indicator for school using a given policy, and regressions also
control for both of those indicators. All regressions further control for log birth weight, gestational age, indicators
for prenatal case started in first trimester, congenital anomalies, abnormal conditions at birth and maternal health
problems as well as indicators for birth cohort, maternal education, medicaid birth, race and ethnicity and child’s
gender. Columns (1) and (4) only include a single interaction at a time while columns (2) and (5) include all
interactions together in one regression. Columns (3) and (6) present means for policy use (^ marks average class size
in column 6). Heteroskedasticity robust standard errors.
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Appendix

A1. Florida school survey

We utilize following questions in our analysis in Table 5:

1. Does this school sponsor any of the following before-school or after-school programs? (yes/no)

(a) child care programs
(b) recreational programs
(c) academic enrichment programs
(d) remedial/tutoring programs

2. Does this school structure schedules and staff in any of the following ways? (yes/no)

(a) block scheduling
(b) common preparation periods
(c) subject specialist teacher
(d) organize teachers into teams
(e) looping
(f) multi age classrooms

3. Does this school sponsor? (yes/no)

(a) summer school
(b) year round classes
(c) extended school year
(d) Saturday school

4. What is the average number of students for a regular class? (number; grade specific)

5. What special measures, if any, does this school take to try to improve the performance of low
performing students?

(a) require grade retention
(b) require summer school for grade advancement
(c) require school supplemental instruction
(d) require Saturday classes
(e) require before/after school tutoring

For questions 1, 2, 3 and 5 we code indicator equal to one if principal responded affirmatively
in the first survey year. In question 4 we chose the number of students reported in grade one. We
discard all schools with missing observations in any of the questions.
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A2. Tables

Table A1: Descriptive statistics: demographic characteristics of mothers and children

(1) (2) (3) (4) (5) (6) (7) (8)

All August September All August September

% African-American 21.9 22.4 25.8 25.7 25.9 24.2 24.2 24.2

% Hispanic 22.7 23.0 24.1 23.9 24.3 23.6 23.6 23.6

% immigrant 23.0 23.3 23.1 22.8 23.4 20.0 20.0 20.0

% HS dropout 20.6 20.6 23.8 23.6 24.0 25.0 25.0 25.0

% HS grad 59.0 59.3 61.0 61.0 61.0 55.1 55.1 55.1

% college grad 20.5 20.1 15.2 15.4 15.0 19.9 19.9 19.9

% married 65.6 65.2 60.7 61.0 60.3 63.4 63.1 63.7

% Medicaid birth 44.4 45.1 50.8 50.5 51.1 50.4 50.4 50.4

% male 51.2 51.1 50.6 50.5 50.8 51.6 51.5 51.6

% mom health problems 23.7 23.7 24.3 24.4 24.3 23.2 23.0 23.4

Maternal age 27.1 27.1 26.6 26.6 26.6 24.8 24.8 24.8

Birth weight 3343 3341 3328 3325 3330 3318 3318 3319

% September 8.8 50.0 48.8 0.0 100.0 50.0 0.0 100.0

N 1,220,803 215,971 139,211 71,214 67,997 2,184 1,092 1,092

Sibling sample used in analysisSingletons sample used in analysis

August and September births

All births
All

Note: Sample is based on all singleton births between 1994 and 2000. Table A1 present means and sample sizes for
eight different samples. Column (1) includes all births between 1994 and 2000 with complete demographic information;
column (2) presents a subset of these births from August and September. Columns (3) to (5) present information for
children used in the singletons empirical analysis while columns (6) to (8) are restricted to sample of siblings used in
the sibling fixed effects empirical analysis. Columns (3) and (6) present descriptives for pooled August and September
births while columns (4), (5), (7) and (8) present it for each month and sample separately.
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Table A2: Effects of school starting age (August vs. September) - separate estimates for
mathematics and reading

(1) (2) (3) (4)

September birth 0.186*** 0.190*** 0.208*** 0.213***

(0.005) (0.004) (0.005) (0.004)

Mean of Y

Observations

Number of children

September birth 0.195*** 0.195*** 0.239*** 0.238***

(0.026) (0.027) (0.027) (0.027)

Mean of Y

September birth 0.195*** 0.199*** 0.239*** 0.239***

(0.026) (0.026) (0.027) (0.026)

Mean of Y

Observations

Number of sibling pairs

September birth 0.209*** 0.208*** 0.237*** 0.238***

(0.031) (0.031) (0.031) (0.031)

Mean of Y

Observations

Number of sibling pairs

Controls X X

1,092

0.133

0.065

0.326

0.062

0.163

0.364

1,092

10,758

Panel D: Siblings with same parents  (FE) 

735

7,392 7,456

735

10,874

10,874

Panel C: Siblings (FE)

Grade 3 to 8 pooled test 

scores in reading

Panel A: Singletons (OLS)

728,913

139,188

Panel B: Siblings (OLS)

Grade 3 to 8 pooled test 

scores in math

10,758

722,642

139,038

Note: This table replicates analysis from columns (1) and (2) of Table 1 separately for mathematics (columns 1 and
2) and reading (columns 3 and 4) test scores. Standard errors clustered at individual level in Panel A and at mother
level in Panels B to D.
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Table A3: Effects of school starting age (August vs. September) - comparison of different
econometric models, continued

(1) (2) (3) (4) (5) (6)

Point estimate -0.040*** -0.030*** 0.197*** 0.202*** 0.307*** 0.323***

(0.001) (0.000) (0.004) (0.004) (0.007) (0.007)

First-stage 0.642*** 0.624***

(0.003) (0.003)

Mean of Y

Observations

# children

Controls X X X

N/A N/A

(age at test)

Grade 3 to 8 pooled test scores

OLS Reduced form Instrumental variables

0.063

730,675

139,211

(September birth) (age at test)

Note: This table is based on sample and analysis from columns (1) and (2) in Panel A of Table 1. Panel A regresses
test scores on age at the time of test. Panel B regresses test scores on indicator for September birth. Analyses in
Panel B replicate results from Panel A of Table 1 for comparison. Panel C presents 2SLS estimates where in the
first-stage we regress age at the time of test on September birth while in the second-stage we regress test scores on
predicted age at the time of test. Age at the time of test is defined as age in months in March of a given school year.
FCAT test is administered in late February to mid-March. Standard errors clustered at individual level.

Table A4: Effects of school starting age (August vs. September) - selection into public schools

(1) (2) (3) (4) (5) (6)

September birth -0.019*** -0.020*** 0.006*** 0.005*** 0.005 0.003

(0.002) (0.002) (0.002) (0.002) (0.010) (0.010)

Mean of Y

Observations

Controls X X X

2,952

P(observed with 3rd grade test scores |                                     

matched to public schools)

Sibling FE

0.833

Singletons

P(matched to public 

schools)

174,439215,971

0.807 0.818

Note: Sample is based on all singleton births between 1994 and 2000. All estimates come from August vs. September
comparison. The dependent variable in columns 1 and 2 is probability of being matched between birth records and
public school records. The dependent variable in columns 3 to 6 is probability of being observed with third grade test
score conditional on being matched between birth and public school records. Samples are: universe of singleton births
(columns 1 and 2); universe of singleton births matched to public school records (columns 3 and 4); and subsample
of siblings born one in each month (columns 5 and 6). Cross-sectional regressions in columns 1 to 4 and sibling fixed
effects regressions in columns 5 and 6. Columns 1, 3 and 5 do not include any controls; columns 2, 4 and 6 control
for maternal education, marital status at birth, Medicaid birth, race, ethnicity, child’s gender, cohort dummies, log
birth weight, gestational age, indicator for start of prenatal care in first trimester as well as indicators for congenital
anomalies, abnormal conditions at birth and maternal health at birth. Column 6 further includes indicator for second
born. Robust standard errors in columns 1 to 4 and clustered at family level in columns 5 and 6.

42



Table A5: Effects of school starting age (August vs. September) - differential effects for boys by
maternal socioeconomic characteristis

(1) (2) (3) (4) (5) (6) (7)

VARIABLES HS dropout HS grad College grad Medicaid Non-medicaid Black/Hispanic White

September effect for boys 0.149*** 0.126*** 0.077*** 0.155*** 0.093*** 0.149*** 0.111***
(0.011) (0.006) (0.010) (0.007) (0.006) (0.008) (0.006)

September effect for girls 0.139*** 0.074*** 0.041*** 0.119*** 0.047*** 0.119*** 0.058***
(0.010) (0.005) (0.007) (0.006) (0.005) (0.007) (0.005)

p-value difference 0.540 p<0.001 0.003 p<0.001 p<0.001 0.004 p<0.001

Observations 12,532 31,665 7,247 26,764 24,680 22,977 28,467

September effect for boys 0.212*** 0.198*** 0.163*** 0.209*** 0.182*** 0.207*** 0.187***
(0.013) (0.008) (0.015) (0.009) (0.008) (0.009) (0.008)

September effect for girls 0.201*** 0.203*** 0.229*** 0.197*** 0.213*** 0.207*** 0.197***
(0.011) (0.007) (0.014) (0.008) (0.008) (0.008) (0.008)

p-value difference 0.515 0.635 0.001 0.299 0.007 0.975 0.385

Observations 172,587 447,011 111,077 368,859 361,816 338,780 391,895
Number of individuals 33,132 84,946 21,133 70,701 68,510 64,342 74,869

September effect for boys -0.030*** -0.063*** -0.169*** -0.033*** -0.110*** -0.020*** -0.114***
(0.002) (0.002) (0.005) (0.002) (0.002) (0.001) (0.002)

September effect for girls -0.022*** -0.022*** -0.057*** -0.018*** -0.037*** -0.012*** -0.041***
(0.002) (0.001) (0.003) (0.001) (0.001) (0.001) (0.002)

p-value difference 0.002 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001
Observations 33,132 84,946 21,133 70,701 68,510 64,342 74,869

September effect for boys -0.214*** -0.175*** -0.097*** -0.206*** -0.139*** -0.166*** -0.178***
(0.007) (0.004) (0.005) (0.005) (0.004) (0.005) (0.004)

September effect for girls -0.203*** -0.122*** -0.055*** -0.170*** -0.090*** -0.141*** -0.121***
(0.007) (0.003) (0.004) (0.004) (0.003) (0.004) (0.003)

p-value difference 0.256 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001

Observations 33,132 84,946 21,133 70,701 68,510 64,342 74,869

Panel B: Test scores

Panel C: Redshirted

Panel D: Retained

Maternal education Income Race/Ethnicity

Panel A: Kindergarten readiness

Note: Sample is based on all singleton births between 1994 and 2000. For each sample and outcome we present two
estimates on being born in September separately for males and females. The p-values reported below each estimates
pair test statistical equality of the two coefficients. Columns (1) to (3) present heterogeneity by maternal education,
columns (4) and (5) present heterogeneity by medicaid status which is proxy for income, and columns (6) and (7)
present heterogeneity by race and ethnicity. Outcomes are: kindergarten readiness (Panel A), pooled math and
reading test scores in grades 3 to 8 (Panel B), probability of being redshirted (Panel C) and school retention (Panel
D). Kindergarten readiness excludes cohorts 1997 to 1999 due to missing data. Redshirting is defined as indicator
variable that equals to one if a child has a higher than expected, based on date of birth, age at the time of first
observation in school records in either kindergarten or grade one. School retention prior to grade three is defined as
an indicator variable that equals to one if child is observed twice in the same grade. No control variables are included.
Heteroskedasticity robust standard errors for being redshirted and retained while clustered at individual level for test
scores.
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