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Abstract 

We study the effects of access to high school math and science courses on postsecondary STEM 

enrollment and degree attainment using administrative microdata from Missouri. Our data panel includes 

over 140,000 students from 14 cohorts entering the 4-year public university system. The effects of high 

school course access are identified by exploiting plausibly exogenous variation in course offerings within 

high schools over time. We find that differential access to high school courses does not affect 

postsecondary STEM enrollment or degree attainment. Our null results are estimated precisely enough to 

rule out moderate impacts. 
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1. Introduction 

Increased human capital production in science, technology, engineering, and mathematics 

(STEM) fields is a prominent policy goal of the United States. Workers with STEM backgrounds 

earn more on average than other workers, labor demand in STEM fields is projected to be strong, 

and expanding the STEM workforce has been identified as an important objective in promoting 

the long-term economic prosperity of the United States (Bureau of Labor Statistics, 2014; 

Committee on Prospering in the Global Economy of the 21st Century, 2007; Fayer, Lacey, & 

Watson, 2017; National Research Council, 2011). In addition to increasing the scope of the STEM 

workforce, diversity in STEM fields has received prominent attention in recent research and public 

policy discussions (Carnevale, Fasules, Porter, & Landis-Santos, 2016; Sass, 2015; White House, 

2016).  

Improved access to STEM courses in high school has been advocated as a lever by which 

the STEM workforce can be expanded and diversified. Postsecondary STEM outcomes are 

intermediary – the idea is that exposure to more, and more-advanced, STEM courses in high school 

will lead to more interest and success in STEM in college, which in turn will translate to a more 

robust STEM workforce. Calls for improved access to STEM coursework in high school, and 

especially improved access at schools that primarily serve under-represented minorities, have 

come from policy and advocacy groups, journalists, and the highest levels of government. For 

example, the Obama Administration’s “STEM for All” campaign argued, among other things, that 

“For high-school students, access to core and advanced STEM coursework is an essential part of 
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preparing to enter the workforce equipped with relevant skills for a broad range of jobs, and to 

successfully pursue STEM degrees and courses in college” (White House, 2016).1 

The academic literature has devoted considerable attention to studying the effects of STEM 

courses in high school – measured in terms of both access and direct course-taking – on later-life 

outcomes. A well-established empirical regularity is that the more STEM courses a student takes 

during high school, the higher her likelihood of STEM enrollment and degree attainment in college 

(e.g., see Long, Conger & Iatarola, 2012; Maltese and Tai, 2011; Sadler & Tai, 2007). However, 

the endogeneity of students’ own course-taking behaviors makes causal inference difficult – 

unobserved preference or endowment heterogeneity may lead to both the pursuit of technical 

courses in high school and college STEM outcomes.  

Economists working in this area have typically skipped over intermediary postsecondary 

outcomes, such as STEM degree attainment, focusing instead on understanding how high school 

curricula influence labor market outcomes. Notable studies include Altonji (1995), Levine and 

Zimmerman (1995), and Rose and Betts (2004). These studies face the same fundamental concern 

about the endogeneity of students’ own course-taking decisions. In recognition of this concern, the 

authors favor models that link variation in high school course offerings, irrespective of the courses 

that individual students take, to longer-term outcomes. While helpful, a remaining and well-

understood endogeneity concern is that the course offerings of a high school may be related to 

student sorting to schools, and possibly other resources and opportunities, which can also affect 

college outcomes.  

                                                 
1 Also see guidance from the President’s Council of Advisors on Science and Technology (2010), which 
recommends expanding the availability of advanced STEM courses in high school. Two other recent examples are, 
among policy and advocacy groups: Randazzo (2017); and in the media: Deruy (2016), which is motivated by a 
report from the U.S. Department of Education’s Office of Civil Rights.  
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While both of these endogeneity concerns have been well-articulated previously, to the 

best of our knowledge they have not been simultaneously addressed. To be more specific, while 

previous studies mitigate the threat of endogeneity from individual student choices over courses, 

they are unable to fully address the recognized threat of endogenous course offerings across high 

schools because they rely on cross-sectional data. An innovation of our study is the construction 

of a 14-year data panel of entrants into Missouri’s 4-year public university system, merged with 

administrative records on course offerings at the high school level. These data facilitate a high 

school fixed effects identification strategy that leverages variation within high schools over time 

in course offerings, allowing us to address both endogeneity threats.  

Our within-high-school identification strategy improves on available research but raises 

two issues. First, we sacrifice statistical power by isolating within-high-school variance in course 

access for identification. However, this concern is of limited practical importance in our study 

because of our large sample and the non-negligible within-high-school variance share of course 

offerings.2 Our standard errors are small enough to permit meaningful inference. The second issue 

is the potential for endogenous changes in course offerings within high schools over time. Over 

the full 14 years of our data panel such changes seem plausible – e.g., a compositional shift in a 

neighborhood might induce a change in the high school curriculum driven by shifting student 

interests. However, over shorter time intervals, variation in course offerings within a high school 

is more likely to be driven by idiosyncratic shocks. Examples include changes to personnel and 

rigidities in the functions that map course offerings to enrollment within schools (i.e., rules, 

implicit or explicit, governing how many sections of a course are offered based on projected 

enrollment and class sizes). Although we lack data on the programmatic details that drive 

                                                 
2 As noted below, 17 percent of the variance in course access in our data panel occurs within high schools over time. 
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curriculum changes to isolate specific channels, we test indirectly for evidence of bias from 

endogenous changes within high schools over time by partitioning our long data panel into a series 

of shorter panels. Within the shorter panels systematic, endogenous shifts within high schools are 

less likely. This exercise provides no indication that our findings are affected by bias from this 

type of endogeneity. 

We show that expanded access to STEM courses in high school does not increase 

postsecondary STEM enrollment or degree attainment. Our estimates are substantively small and 

precise. Point estimates from our preferred models imply effect sizes of a one-standard-deviation 

increase in high school course access on postsecondary STEM enrollment and attainment of just 

0.10-0.15 percentage points. With 95 percent confidence, we can rule out effects larger than 3-5 

percent of the sample means for these outcomes. Our null findings are robust to numerous 

measurement modifications. They persist if we separately estimate the effects of access to math 

and science courses, and access to math courses that differ by the content level (regular or 

advanced).  

We also show that there is no detectable effect heterogeneity across high schools that differ 

by the racial/ethnic minority share of the student body. Policy proposals to expand STEM course 

access at high schools with high minority shares reflect the concern that a lack of access affects 

students who attend these schools specifically. However, our results indicate that access to courses 

alone is not the problem. There is evidence of modest effect heterogeneity by gender and race 

within high schools, but the heterogeneity is not in a direction that suggests increases in course 

access will reduce postsecondary STEM outcome gaps – male and white students are marginally 

more responsive to changes in course access relative to women and underrepresented minority 

students. On the whole, these results indicate that simply increasing the number of math and 
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science courses offered in high school is unlikely to change the demographic distribution of college 

STEM degrees in the direction intended by policy. 

Finally, as a complement to our reduced-form analysis of course access, we explore models 

that aim to identify the causal effect of course-taking in high school. We use course access as an 

instrument for courses taken by students – a more assumptive modeling structure that we discuss 

in detail below. An insight from the instrumental variables models is that while increases in course 

access correspond positively to increases in course-taking for individual students, the mapping is 

substantively weak. The weak link between course access and course-taking, which is presumably 

the first-order pathway by which increased access would be expected to affect postsecondary 

STEM outcomes, is not consistent with the presence of widespread excess demand for math and 

science courses in high school.3  

2. Empirical Approach  

We build on the methodological structure used by Altonji (1995), Levine and Zimmerman 

(1995), and Rose and Betts (2004). First, consider the following cross-sectional regression linking 

student course-taking in high school to subsequent outcomes: 

0 1 2 3is i s is isY X Z Cβ β β β ε= + + + +         (1) 

In our application isY  is a postsecondary STEM outcome – either enrollment in a STEM major or 

the completion of a STEM degree – for student i who attended high school s. iX  and sZ  are vectors 

of observed individual and high-school variables, respectively, from which isC  is separated for 

                                                 
3 Because variation in course access is such a weak predictor of course-taking, our study is ultimately uninformative 
about policies that require additional course-taking explicitly. Evidence on the effects of mandatory course-taking is 
mixed. Studies suggest short-term academic benefits but evidence on longer-term outcomes is less promising since 
such initiatives can induce dropout (e.g., Allensworth, Lee, Montgomery, & Nomi, 2009; DiCicca & Lillard, 2001; 
Cortes, Goodman, & Nomi, 2015; Jacob, Dynarski, Frank, & Schneider, 2017; a related literature examines high 
school exit exams and similarly finds negative effects on graduation: e.g., Jacob, 2001; Jenkins, Kulick, & Warren, 
2006; Papay, Murnane, & Willett, 2010 ). The negative effects documented in some studies of course mandates 
make policies that expand course access without mandatory course-taking appealing. 
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presentational convenience as it denotes the treatment of interest: the number (and sometimes type) 

of STEM courses taken in high school by student i. The elements of the X-vector include student 

race/ethnicity and gender, ACT math and English scores, and high school class rank.4 The Z-vector 

contains time-varying high school characteristics including total enrollment, the share of the 

student body that identifies as a minority race/ethnicity, and the share of the student body that is 

free or reduced-price lunch eligible. isε  is an error term.  

We would like to interpret 3β  as the causal effect of STEM course-taking in high school 

on STEM outcomes in college. However, causal inference is problematic because isC  is likely 

endogenous. As noted above, key sources of endogeneity include (a) within a high school, 

variation in individual student course-taking behavior will be driven by unobserved factors that 

also influence college outcomes, and (b) across high schools, variation in course offerings is likely 

correlated with factors that are difficult to measure and also affect STEM outcomes in college, 

such as unobserved student attributes (e.g., from Tiebout sorting) and school resources (e.g., 

teacher quality, facilities). 

 We address the first issue by substituting a measure of the courses offered by the high 

school for actual courses taken by each student: 

 0 1 2 3is i s s isY X Z CA uδ δ δ δ= + + + +         (2) 

Equation (2) is the same as Equation (1) except for the substitution of sCA  for isC , where sCA  

measures the courses available at high school s during student i’s high school career. In the 

                                                 
4 Students’ class ranks and ACT scores are determined during the treatment window (high school). A concern is that 
including these variables could dull the estimated coefficients of course access and course-taking. In recognition of 
this concern, we have estimated our models that exclude these control variables and confirmed that the results we 
show below are robust (results available upon request). We prefer the models that include the full suite of control 
variables for students because they improve precision with no indication that they substantively influence the 
parameters of interest. 
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absence of access to administrative data on course offerings from schools, Altonji (1995), Levine 

and Zimmerman (1995), and Rose and Betts (2004) construct proxy measures of sCA  based on the 

course-taking behaviors of a student’s peers within the same school. Our study offers a modest 

data improvement in that we have access to administrative records on annual course offerings of 

high schools from the Missouri Department of Elementary and Secondary Education (see below 

for more details about the data).5  

  The advantage of the model in Equation (2) is that sCA  does not incorporate variation from 

student i’s own course-taking behavior to identify 3δ . The substitution of sCA  for isC  also implies 

a shift in the interpretation of the focal parameter. Assuming other problems away, 3δ  can be 

interpreted as the effect of exposure to course offerings at the high school level, rather than actual 

courses taken. Thus, 3δ  has an “intent-to-treat” (ITT) interpretation. In addition to being 

informative about the treatment effect subject to the complier rate, the ITT parameter is of direct 

policy interest given that prominent proposals to increase the scope and diversity of the STEM 

workforce have focused on expanding course access in high school. 

While identification is improved in Equation (2) relative to Equation (1), Equation (2) 

relies on variation across high schools in course offerings for identification. Altonji (1995), Levine 

and Zimmerman (1995), and Rose and Betts (2004) recognized this limitation but had access only 

to cross-sectional data and thus were unable to address it fully. A straightforward but important 

innovation of our study is the construction of a long data panel of high schools, which allows for 

                                                 
5 sCA  will be measured with error for mobile students during the late high school years because we cannot link 
individual students in the postsecondary and K-12 data systems, and thus cannot track individual mobility during 
high school. High school assignments are determined by the high school from which students graduated as coded in 
the higher education data system. This limitation is not unique to our study – it is also relevant for aforementioned 
prior studies that measure course access using peers’ course-taking. 
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an improved methodological approach (as advocated by Altonji, Blom, and Meghir, 2012). 

Specifically, our preferred models are panel-data versions of Equation (2) that leverage our ability 

to observe multiple cohorts of students graduating from high schools over time: 

0 1 2 3ist it st st s t istY X Z CA eγ γ γ γ θ τ= + + + + + +        (3) 

Equation (3) builds on Equation (2) with the addition of a time dimension, indexed for cohorts of 

high school graduates by t. Correspondingly, we can include high school and year fixed effects in 

the model, sθ  and tτ ,  respectively. The parameter of interest in Equation (3) is 3γ , which is 

identified using variation in course offerings over time within high schools conditional on the 

sample-wide time trend captured by tτ . Our standard errors are clustered by high school 

throughout.  

The concern that endogenous course offerings across high schools will bias the results is 

mitigated by Equation (3). As noted previously, the remaining threat to identification is 

endogenous changes to course offerings within high schools over time. Below we show results 

from a test designed to detect bias from such changes and we do not find evidence of bias. Equation 

(3) is our preferred specification for estimating the causal effects of access to STEM courses in 

high school.  

In addition to the policy relevance of our reduced-form ITT parameter, 3γ , another 

desirable feature is that it allows for multiple pathways by which course offerings in high school 

can affect postsecondary STEM outcomes. For example, in addition to the intuitive first-order 

pathway of inducing students to take more STEM courses, increasing the number of high school 

STEM courses could also affect students by affecting their peers, changing the culture of a high 

school, and/or affecting teacher retention and recruitment, among other possibilities. These types 
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of indirect effects can influence students above and beyond the effect of changing their own 

course-taking behavior and will be captured by 3γ . 

Still, models that aim to identify the direct effect of course-taking are also of interest. By 

imposing more restrictive assumptions on the causal pathway, we can recover treatment effects of 

course-taking using an instrumental variables (IV) approach. The IV approach uses variation in 

course offerings within a high school over time to instrument for courses taken by students, and in 

turn use the instrumented values to estimate the effects of courses taken, as follows: 

0 1 2 3 1ist it st st s t istC X Z CA eπ π π π φ ρ= + + + + + +       (4) 

0 1 2 3 2
ˆ

ist it st ist s t istY X Z C eα α α α ψ η= + + + + + +       (5) 

To support a causal interpretation, stCA  must be excludable from Equation (5) conditional on the 

other controls. Beyond the exogeneity conditions required for Equation (3), this additionally 

requires we assume that there are no indirect effects of stCA  on high school students through 

channels other than course-taking. Given this strict requirement, the estimation framework in 

Equations (4) and (5) can be used to obtain what is likely an upper-bound estimate of the course-

taking effect. This is because any indirect effects of course access would likely generate upward 

bias by attributing correlated indirect effects to the course-taking mechanism. As a specific 

example, if more available STEM courses encourage a student’s peers to take more courses, and 

this in turn influences her own interest in STEM, the indirect effect will be embodied in 3α  along 

with any direct effect on her own course-taking behavior. 

The first stage of the IV model also proves useful for contextualizing our findings. As we 

show below, exposure to additional STEM courses in high school is a statistically significant 

predictor of the number of STEM courses taken. However, the substantive mapping of course 
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exposure to course-taking is weak. The weak link between course access and course-taking helps 

to explain our primary finding that access to more STEM courses in high school does not improve 

STEM outcomes in college.  

3. Background 

3.1. Data and Context 

Our student records are from administrative microdata provided by the Missouri 

Department of Higher Education (DHE). We focus on full-time, first-time students who graduated 

from a Missouri public high school and matriculated to a 4-year Missouri public university within 

two years of completing high school. Our data panel covers over 140,000 students from 14 cohorts 

of entrants into the public university system between 1996 and 2009.  

There are 13 public 4-year universities in Missouri as listed in Appendix Table A2. STEM 

education is highly concentrated within the system, with nearly 60 percent of STEM graduates 

coming from just two universities: the state flagship University of Missouri-Columbia (37 percent 

of all STEM graduates) and the engineering-focused Missouri University of Science and 

Technology (22 percent of all STEM graduates, despite accounting for just four percent of system 

enrollees). Three other universities – the highly selective Truman State University and moderately 

selective Missouri State University and University of Central Missouri – produce 6-8 percent of 

STEM graduates each; all other universities produce five percent or fewer of STEM graduates.6  

We track each student in the Missouri system to determine whether she graduated within 

six years of entry (from any system school), and if so, her final major.7 The DHE data also include 

                                                 
6 Selectivity designations are based on the 2015 Carnegie Classifications of Higher Education.  See 
http://carnegieclassifications.iu.edu.  
7 Some students will graduate after the six-year window, but we follow convention in the literature of using six years 
for our primary analysis. Results are qualitatively similar when using graduation rates as measured over seven or 
eight years (omitted for brevity). 
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detailed information about students’ academic ability that we incorporate into our models – i.e., 

ACT math and English scores (following Bettinger, Evans & Pope, 2013) and high school class 

ranks. Moreover, the number of courses students take in each of several subjects during high 

school, including math and science, are taken from the DHE data. A “course” is defined as one 

year of course-taking. During our analysis period, students needed to complete two math courses 

and two science courses to meet minimum high school graduation requirements established by the 

State Board of Education.8 For students who intend to enroll in a public university in Missouri, the 

Coordinating Board for Higher Education (CBHE) recommended four mathematics courses. 

We identify initial majors and degrees based on the Classification of Instructional 

Programs (CIP) taxonomy developed by the US Department of Education for college majors. The 

initial major is an “intended” major; there are no requirements or formal system rules that govern 

the initial selection. We classify each major as either STEM or non-STEM, with STEM including 

the following fields: engineering (7% of initial majors), biological science (6%), computer science 

(3%), physical science (2%), engineering technology (1%), agricultural and animal science (1%), 

mathematics (1%), and other STEM (1%).9  

Figure 1 shows trends in STEM majors and degrees for the high school cohorts in our 

sample from 1996-2009. Initial interest in STEM remained relatively flat over most of the data 

panel but increased some in the later years; in total, initial STEM enrollment increased 20 percent, 

or roughly 5 percentage points, between 1996 and 2009. Similarly, STEM attainment increased by 

about 23 percent. The growth in women declaring STEM majors was similar to the overall rate, 

but the growth in attainment among women was slightly below the sample average. The trend in 

                                                 
8 The state increased requirements to three math and science courses starting in 2010, after the timespan of our data 
panel. 
9 Other STEM includes technical subfields of education; military technologies; psychology; social sciences, health 
professions, and management sciences. 
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initial STEM enrollment among underrepresented minority students (defined here as black and 

Hispanic students) is noisier but grew at a similar rate to the overall trend. However, STEM degree 

attainment declined by 13 percent among these students. 

We supplement the DHE data with a data panel of high school course offerings assembled 

using administrative records from the Missouri Department of Elementary and Secondary 

Education (DESE). In our preferred measure of course availability, each course section is treated 

as a separate course. For example, if a high school offers three sections of algebra-I in a single 

year, this counts as three math courses. We also adjust by high school enrollment to get measures 

of “courses available per 100 students.” For students in each cohort at each high school, we average 

the total number of (enrollment adjusted) courses offered in the high school from the year of the 

student’s graduation and the two years prior to construct our measure of exposure to math and 

science courses during high school. We use three years because some high schools span grades 9-

12 and others span grades 10-12.  

Figure 2 shows trends over time in access to high school STEM courses in Missouri. The 

black solid line represents all math and science courses available per 100 students – the trend is 

relatively flat, with a slight uptick by the end of the period (overall growth of about six percent 

from 1996 to 2009).  We also separately plot advanced math, high school level math, and science 

courses. Dividing math and science courses is straightforward; to differentiate the content of math 

courses we coded each math course in the high-school data as either “advanced” (i.e., college prep 

and college level courses) or “standard” (i.e., high school-level math courses). The coding is based 

on the course title available in administrative records (we were unable to follow a similar process 

to classify science courses because of inconsistent reporting across high schools and years).10 The 

                                                 
10 Specifically, we coded courses as either high school level, college preparatory level, or college level based on 
administrative course numbers, course grade-level (a standardized reporting of the year in school in which students 
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overall growth in math and science courses is driven primarily by increases in advanced math 

offerings, with the average advanced math offering increasing nearly 14 percent. Over the analysis 

period, standard high school-level math course access stayed flat, while average science course 

access declined by about seven percent. 

In sensitivity checks, we also use two other measures of course availability. The first is the 

total number of course offerings unadjusted for student enrollment. A larger number of course 

offerings may provide more access in an absolute sense, in a way that is missed by our enrollment-

adjusted measures. The second is a measure of “topic availability,” which we also measure per 

100 students. The “topic availability” measure does not count each section of a course separately. 

For example, if a high school offers three sections of algebra-I in a single year, this counts as just 

one topic. The value of this alternative measure is best articulated by noting that our primary 

measure captures variation in access to STEM courses along two dimensions: (1) increased 

availability of seats holding the topic set fixed, and (2) increased availability of topics. The topic 

availability measure isolates variation along the latter dimension only. 

We additionally collect data on high school characteristics from the Common Core of Data 

made available by the National Center for Educational Statistics (NCES). We merge the 

information about high schools to student records in the DHE data by high school and year.11 The 

final merged dataset includes over 140,000 students who attended 498 public high schools and 

matriculated to one of the 4-year public universities in Missouri.  

                                                 
typically take the class), sequence number (identifies content of courses that are taught at more than one level), and 
delivery system. 
11 A notable variable is high school enrollment, which we use as a covariate in our fully specified models and to 
adjust our preferred course-availability measures. Given that our course-availability measures cover courses offered 
in grades 10-12, we use enrollment in grades 10-12 for consistency. 
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Summary statistics for students and high schools are reported in Table 1. The sample is 56 

percent female and 85 percent white. Black students comprise 8 percent of the sample, and 

Hispanic and Asian students account for 2 percent each. High schools in Missouri are 

disproportionately rural, although student representation is more balanced across high school types 

than is implied by the high school characteristics because rural schools are small (see columns 3 

and 4). 

Table 2 shows that approximately 20 percent of initial and completed degrees at Missouri 

universities are in STEM fields.12 Forty-three percent of students who declare a STEM major upon 

entry graduate with a STEM degree, while just four percent of students who do not initially declare 

a STEM major complete a STEM degree. These simple statistics highlight the strong link between 

initial STEM enrollment and completion. 

Anticipated differences by race/ethnicity and gender in STEM enrollment and attainment 

are also on display in Table 2. For example, the first two columns show that men are more than 

twice as likely as women to declare a STEM major and earn a STEM degree. Among 

races/ethnicities, Asian students are the most likely to initially declare a STEM major and complete 

a degree (31 and 21 percent, respectively), while black students are least likely (18 and 6 percent, 

respectively). Among those that declare STEM degrees; male, white, and Asian students are more 

likely (46, 44, and 51 percent, respectively) than female, black, and Hispanic students (38, 24, and 

38 percent, respectively) to earn one. 

Table 3 reports summary statistics on STEM course-taking and course exposure in high 

school. The first takeaway from Table 3 is that there is substantial variation in STEM course-taking 

in the data, which is measured in terms of courses that qualify for the Missouri Coordinating Board 

                                                 
12 Although student transfers out of STEM are higher than transfers into STEM, the STEM enrollment and 
attainment shares end up being similar because initial STEM majors graduate at higher rates. 
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for Higher Education recommended high school curriculum.13 About 90 percent of the students in 

our sample took between 5-11 qualifying math and science courses.14 There is also significant 

variation in course availability, course availability per 100 students, and topic availability per 100 

students. The most relevant measure for our primary models is course availability per 100 students, 

where row-1, column-3 of the table shows that the mean value is 10.8 with a standard deviation of 

3.6. Thus, the range of course exposure within one standard deviation of the mean is 7.2-14.4 

STEM courses per 100 students on average during grades 10-12. Variation in course access within 

high schools over time – the variation we isolate for identification in our preferred models – 

accounts for 17 percent of the total variance of enrollment-adjusted course availability.15 

The remainder of Table 3 shows splits for the course-taking and course access measures 

by (a) STEM attainment status and (b) demographics. The large differences across demographic 

groups in terms of postsecondary STEM outcomes, shown in Table 2, are not apparent at nearly 

the same level when we focus on high school STEM exposure. It is the case that students who 

ultimately complete STEM degrees take more math and science courses in high school, but they 

have only a very slight advantage in course access (columns 2—5). Unsurprisingly, female and 

male students have similar course access (differentials would only be expected in the presence of 

gender segregation in high school, or substantial gendered selection into our sample from some 

high schools); perhaps more surprising is that female students take about the same number of math 

and science courses in high school as male students despite being much less likely to enroll in or 

                                                 
13 For example, in math, this effectively includes high school courses above pre-algebra. These data come from 
students’ postsecondary records and therefore include courses taken outside of the Missouri public school system 
when applicable. 
14 There are a small number of observations (about 0.2 percent) with zero recorded math and science courses; while 
odd, this is not impossible, and our results are insensitive to the exclusion of these observations from the analytic 
sample. 
15 We decompose the variance in course availability per 100 students by regressing this variable on the vector of 
high school indicator variables. One minus the R-squared from the regression gives the share of the variance that 
occurs within high schools.  
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complete a STEM degree in college. The splits by race/ethnicity show that Asian students take the 

most math and science courses relative to other groups and black students take the least. In terms 

of course exposure, black, Hispanic and Asian students attend high schools that offer more math 

and science courses than white students (column 2), but this is due to the overrepresentation of 

white students in small, rural schools. This can be seen in column 3, where racial differences in 

access largely disappear when measured by courses available per 100 students.16 There are small 

differences by race/ethnicity in absolute topic availability, and more-pronounced differences when 

we adjust for enrollment. Column 5 shows that black, Hispanic, and Asian students have fewer 

topics available in enrollment-adjusted terms than white students. 

3.2. Tests for effects on college enrollment 

By virtue of using students in the DHE data to define our sample, our analysis necessarily 

conditions on university enrollment. This means that our microdata are ill-suited to examine effects 

of STEM course access in high school on the extensive margin of college (i.e., attendance), but 

well-suited to examine shifts in major choice and attainment conditional on entry into the 4-year 

public university system. Given that individuals who initially enroll in and complete STEM majors 

are positively selected among high school students, the latter margin is arguably the most 

important.17 Still, the potential for variation in STEM course access to affect who enrolls in 

Missouri 4-year public universities potentially complicates the interpretation of our estimates.18  

To get a sense of the importance of this concern we estimate several models using DHE 

and supplementary data, with the results provided in Appendix Table A1. In the first four columns 

                                                 
16 Average high school enrollment for white students is lower than that for black, Hispanic, and Asian students. 
17 The average class rank of university entrants in our sample is in the 70th percentile; among STEM entrants the 
average class rank is in the 77th percentile. 
18 The two most important compositional concerns are: (1) changes in STEM course access in high school could 
induce some students to enroll in Missouri 4-year public universities who would not have enrolled otherwise, and 
(2) changes in STEM course access could induce some students to switch from 4-year Missouri public universities 
to different universities. 
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of the table we regress various college-going outcomes – reported at the high-school-by-year level 

– on high school fixed effects and STEM course access. These regressions are aggregated to the 

school-by-year level but otherwise match the structure of Equation (3). The outcome variables in 

columns (1) – (3) are constructed from data on college matriculation rates provided by Missouri 

high schools, which are for all colleges (public and private) and additionally broken down by 

location (i.e., in-state/out-of-state) and level (i.e., 2-year/4-year). In column (4), we use the DHE 

data to examine matriculation into the 4-year public university system in Missouri (i.e., into our 

sample). The last three columns use the same regression structure but the dependent variables are 

high-school-by-year average academic qualifications of students in the DHE data. All of the 

models are designed to test whether the composition of students in our sample is changing in 

response to variation in access to STEM courses in high school.  

Focusing first on the matriculation regressions using the supplementary data from high 

schools in columns (1)-(3), there is no indication that changes to STEM course access within high 

schools over time affect college matriculation rates. The estimated effects on college matriculation 

in total, as well as matriculation to 4-year and 2-year colleges separately, are not statistically 

significant and the magnitudes of the effects implied by the point estimates are trivial (Appendix 

Table A1 reports the sample mean of each dependent variable for ease of interpretation). Similarly, 

in column (4) we do not observe an effect on the total number of students who attend a 4-year 

Missouri public university (the focal sample in our study).  

The models of student qualifications in columns (5) – (7) corroborate the result that the 

composition of the students in our sample is not changing in response to changes in STEM course 

access during high school. Specifically, there is no indication of changes to the academic 

qualifications of students who matriculate into our sample as measured by ACT scores in math or 
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English. We do observe a relationship between STEM course availability and the high school class 

rank, but the point estimate is very small in practical terms and on the margin of statistical 

significance. Specifically, the point estimate implies that a one standard deviation increase in 

STEM course availability per 100 students in high school corresponds an increase in the class rank 

of students who matriculate into a Missouri 4-year public university of just four-tenths of a 

percentage point, or about 0.5 percent of the sample mean.  

 Based on this analysis, we conclude that variation in the availability of high school math 

and science courses does not affect the composition of our sample of public 4-year college 

enrollees. This supports our focus on the compositional shift between STEM and non-STEM fields 

conditional on enrollment. 

4. Results  

4.1. Primary Findings 

Table 4 presents results from linear probability models building up to our primary 

specification as shown in Equation (3). The outcome in the first vertical panel is an indicator 

variable for whether initial postsecondary enrollment is in STEM (columns 1-3) and the outcome 

in the second panel is an indicator for STEM degree completion (columns 4-6). Within each panel, 

the first row of estimates uses actual courses taken as the independent variable of interest and the 

second row uses courses available. Results using our preferred specification are reported in the 

second row of columns 3 and 6. 

Starting with the first row of the table, we see strong relationships between courses taken 

and postsecondary STEM outcomes. The relationships are fairly stable across models. Recall that 

the baseline rates of initially choosing a STEM major and completing a STEM degree are 21 and 

12 percent in our sample, respectively (per Table 2). Noting that a one-standard-deviation change 
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in high school STEM course-taking in our sample is 2.9 courses (Table 3), these estimates imply 

a strong link between course-taking in high school and postsecondary STEM outcomes. However, 

given the concern about endogenous course selection by individual students, it is ill-advised to 

interpret the estimates in the first row of Table 4 as causal. 

The second row shows results after replacing the courses-taken variable with courses 

available. Per above, our preferred specifications use courses per 100 students to measure access, 

but our findings are not qualitatively sensitive to using alternative measures (see Section 5 below). 

The estimates moderate substantially when we move to the models that use course access. This is 

attributable to two factors: (1) the removal of bias from endogenous student choices, and (2) the 

shift in interpretation to the ITT parameter. The general takeaway reading across the columns of 

the second row is that the underspecified models indicate positive and sometimes statistically 

significant “effects” of course access in high school on postsecondary STEM outcomes. However, 

estimates from the full specification with high school fixed effects provide no such indication.  

While our standard errors rise some when we move to the full specification, which is 

expected because we leverage less identifying variation, the null results are not driven by an 

increase in our standard errors. The estimates themselves are quite small in magnitude. 

Specifically, the point estimates for initial STEM enrollment and degree attainment, taken at face 

value, imply effects of one more course per 100 students on postsecondary STEM outcomes of 

0.03-0.04 percentage points. These equate to about 0.1-0.2 percent of the baseline rates of STEM 

enrollment and completion of 21 and 12 percent, respectively. 

Moreover, even at their upper bounds, the implied effects are modest at best. The upper 

bound of the 95-percent confidence interval for the course-access coefficient in the STEM 

enrollment model is about 0.20 percentage points; in the STEM attainment model it is 0.17 
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percentage points. These estimates correspond to one-unit increases in courses available per 100 

students. Per Table 3, the standard deviation of this variable is 3.6. Multiplying the upper-bound 

point estimates by 3.6 gives upper bounds of a one-standard deviation increase in course access 

per 100 students, which are roughly 0.72 (3.6*0.20) and 0.61 (3.6*0.17) percentage points for 

STEM enrollment and attainment, respectively. These correspond to just 3.4 and 5.1 percent of the 

sample means of these outcomes.  

The models in Table 4 use all high school math and science courses to measure STEM 

exposure. We next use separate measures to explore the potential for effect heterogeneity of 

exposure to math and science courses, and to math courses that differ by the level of content 

covered. Access to different types of courses, and in particular differential access to advanced 

courses across demographic and socioeconomic groups, has received significant attention in 

research (e.g., see Conger, Long and Iatarola, 2009; Klopfenstein, 2004). 

Table 5 shows results from models that permit effect heterogeneity between math and 

science courses, and between math courses by level. All results are from our full specification. 

There is no evidence that differential exposure to math or science courses separately in high school 

affects postsecondary STEM enrollment or attainment. Similarly, there are no differential effects 

of access to regular versus advanced math courses. The point estimates throughout Table 5 are 

small, fluctuate in sign, and none are close to statistically significant at conventional levels. 

4.2. Instrumental Variables Extension 

We now turn to the instrumental variables (IV) models described in Section 2. Under the 

more restrictive assumption that the only pathway by which increased course access in high school 

affects postsecondary STEM outcomes is by directly affecting students’ own course-taking 

behaviors, the IV estimates can be interpreted as causal effects of course-taking. While the effect 
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of course availability on students’ own course-taking is a plausible first-order pathway for effect, 

we again note that to the extent that the exclusion restriction is violated, we would expect the IV 

estimates to be biased upward due to other positive benefits associated with more STEM course 

availability in high school, such as effects on peers (and vice versa for reduced availability). 

A nice illustrative feature of the IV estimation is the first-stage analysis, where we regress 

students’ own course-taking behaviors on course availability at the high school. If increased 

course-taking is the main pathway for effect, the strength of this mapping is critical to the overall 

effect of increasing course availability. Table 6 shows the first stage results for two versions of 

Equation (4), with results from the full version shown in column 2. High school course availability 

is a statistically significant predictor of individual student course-taking. However, it is not a strong 

instrument. In column 1 the F-statistic is below the Stock and Yogo (2005) weak identification 

threshold value of 16 (10% maximal IV size). In our preferred model in column 2 it is even smaller, 

well below the conventional threshold for a weak instrument, raising concerns about bias and 

precision of the IV estimates. 

Substantively, the first-stage results indicate that for every one-unit increase in courses 

available per 100 students on average per year of high school, a student’s own cumulative course-

taking increases by just 0.02-0.04 courses. To put this number in context we can perform a rough 

back-of-the-envelope calculation of the “conversion rate” of courses available, as measured in our 

models, to total courses taken during high school. If we assume that each class has a capacity of 

20 students (around the average for math and science classes in our data), students are distributed 

across classes at random, classes are filled to capacity, and expansion into an extra STEM course 

does not crowd out any other STEM course for individual students (the latter two assumptions are 

essentially that there is excess demand for STEM courses), then a one unit increase in our measure 
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of course availability during high school would be expected to increase the total number of STEM 

courses taken for an individual student by up to 0.60 courses.19 

Our estimates in Table 6 fall well short of this level and in fact, they imply that expanded 

course access does very little to increase STEM course-taking. Put another way, our estimates 

suggest what is very close to a pure substitution with other STEM courses when STEM course 

offerings increase. Moreover, our sample conditions on 4-year public university enrollees, who are 

positively selected among high school students in Missouri (per Table 1, the average class rank in 

our sample is over the 70th percentile). If students in our positively selected sample are more 

interested in STEM coursework than the average high school student, the expected conversion rate 

would be higher in our sample than is implied by our simple back-of-the-envelope calculation.  

Thus, while course-taking is technically responsive to course availability as indicated by 

the statistically significant estimates in Table 6, the level of responsiveness is modest and not 

consistent with the presence of widespread excess demand for math and science courses in high 

school. This result could reflect a lack of demand for more STEM coursework in high school 

unconditionally, and/or the effects of other constraints faced by high school students, such as 

requirements to take courses across many fields for high school graduation and college admittance. 

Regardless of the source, the weak first-stage estimates help to explain our null reduced-form 

results in Table 4.  

                                                 
19 To elaborate briefly, at the upper bound with a course capacity of 20 students, if 20/100 students take each offered 
course and each course is accessible and not redundant, the simple expected increase in total courses taken during 
high school for a student who is exposed to one more course per year on average for three years is 0.60. A simple 
calculation of the lower bound is more difficult because pass-through can be affected by additional constraints, such 
as whether marginal courses fit into students’ course sequences, students are otherwise eligible for courses, and 
whether new courses are on new topics. That said, if we use our “topic availability” measure of course access it is 
fairly easy to arrive at a lower bound of 0.20, and the appendix shows that our results are similar (and even weaker) 
using that measure in the first stage (see Appendix Table A4). 
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The first-stage estimates also have implications for the interpretation of the reduced-form 

findings. While our investigation was initially motivated by an interest in what is best described 

as an extensive margin intervention, the lack of a behavioral response of students on the extensive 

margin means that the primary treatment experienced by most students is on the intensive margin, 

in the form of smaller STEM classes. This is not to say that our analysis isn’t informative about 

the extensive margin, as the pass-through result is critical to understanding policies that aim to 

expand course access, but ex post it is useful context that the way that most students are affected 

by expanded course access is in the form of smaller STEM classes. Inadvertently, our reduced-

form findings speak to the potential for policies aimed at reducing STEM class sizes in high school 

to affect postsecondary STEM outcomes. 

For completeness we briefly present results from the second-stage IV regressions in Table 

7. Given that our instrument is weak we can glean little insight from the findings. Even under the 

strict IV assumptions, there is not clear evidence that additional course-taking in high school 

improves postsecondary STEM outcomes, but large effects (positive or negative) cannot be ruled 

out. While the first-stage regressions are informative about our investigation of course-access 

effects, our study is ultimately not informative about the effects of high school course-taking. 

5. Sensitivity 

5.1 Period Subgroups 

The key identification threat in our models is the potential for endogenous changes to 

course offerings within high schools over time. Because our results are primarily null, the main 

concern is negative bias, which might come about if, for example, high schools where STEM 

training or interest is trending downward respond by offering more courses, and vice versa. This 

would induce a negative correlation between courses available within high schools over time and 
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subsequent STEM outcomes, which in turn could generate null results from our specifications even 

if STEM access in high school positively affects postsecondary STEM outcomes, all else equal. 

We do not view this type of biasing scenario as likely. Instead, it seems more likely that our 

estimates, if anything, would be biased upward because changes to STEM course offerings within 

high schools over time are likely positively correlated with changes to the quality of STEM training 

and/or STEM interest within a high school. Nonetheless, the general biasing threat merits attention; 

if for no other reason than from a mechanical standpoint, over a 14-year span many factors within 

a high school can change and we rely critically on the high school fixed effects for identification.  

We test indirectly for the influence of potential bias from endogenous changes to course 

offerings over time by replicating our primary results using partitions of the full data panel. We 

hypothesize that if bias from endogenous changes within high schools is present, model 

replications based on data that cover a shorter timespan will be less biased because there is less 

time for major changes. We would view substantial differences in our estimates when we go from 

using the full panel, to using just a portion of the panel, as a likely symptom of endogenous changes 

to course offerings within high schools over time. 

Table 8 shows results from replications of our main model estimated on datasets that cut 

the data panel in half (columns 2 and 3) and into thirds (columns 4-6). For ease of comparison we 

re-produce our main estimates from Table 4 in column 1. The findings are generally consistent 

across the various partitions of the full data panel. The point estimates are small and statistically 

insignificant, with one exception (the coefficient in column 6 for the degree-attainment model is 

statistically significant at the 10 percent level), and they nominally flip sign in one case (initial-

major model, column 5). Taken as a whole, we interpret the results in Table 8 as suggesting that 
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endogenous changes to course offerings within high schools over time are unlikely to drive our 

null findings. 

We also briefly mention a related test for this type of bias, in which we estimate models 

that include high-school specific linear time trends. This narrows the identifying variation further 

by isolating deviations from the trend for each high school over the timespan of the data panel. 

Given that our results even without the high school specific time trends are null, and that these 

models are more demanding from a statistical power perspective (i.e., our standard errors are 

larger), it is unsurprising that these models do not overturn our null findings (results omitted for 

brevity). 

5.2 Alternative Measures of Course Access 

We re-estimate our models using two other measures of course availability. The first is 

analogous to our preferred courses-per-100-students measure, but is unadjusted for student 

enrollment at the high school. This allows for the possibility that absolute course access is 

important regardless of the size of the student body. The second measure is the above-described 

topical measure – like our primary measure, it is adjusted into per-100-student units, but it does 

not double-count repeat courses as expanding STEM access. Results using these alternative 

measures are shown in Appendix Table A3. They are substantively very similar to our primary 

findings in Table 4.  

We also estimate “first stage” regressions using the alternative measures of access, 

analogous to the models we report on in Table 6. The results are shown in Appendix Tables A4 

and A5. The strength of the unadjusted course-availability instrument is similar to the enrollment-

adjusted version. The first-stage regression for the topical availability measure shows an even 

weaker and statistically insignificant relationship between topical exposure and course-taking in 
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high school. This leads us to believe that our measures that count repeat courses are preferable for 

measuring course access.  

An explanation for the weak predictive power of our topical-availability instrument is that 

math and science courses on different topics may be viewed as substitutes by students attempting 

to satisfy various high school graduation and college requirements. For example, if a new science 

topic is offered in geology, but a student has already satisfied her science requirements by taking 

biology and chemistry, she may have limited interest in the course, and/or limited capacity to take 

it given other requirements that must be satisfied. In such a scenario, measures that privilege non-

repeat courses at the expense of fully measuring capacity will be less predictive of students’ 

course-taking behaviors. 

6. Effect Heterogeneity 

Next, we consider the possibility that the effects of course access vary by the racial/ethnic 

composition of the high school. This might be expected if, for example, high schools with higher 

percentages of minority students offer less access to STEM courses, in which case we might expect 

greater response elasticities to changes in course offerings at these schools. The descriptive 

statistics in Table 3 provide no prima facie indication of this, but some heterogeneity in course 

access – particularly in narrow pockets of the distribution such as among very high minority-share 

high schools – could be obscured in Table 3. 

We focus on minority students that are underrepresented in STEM fields as a group (black 

and Hispanic students) because of their importance to policy and due to sample size considerations 

in Missouri. We estimate separate models for three overlapping subsets of schools: those with 

underrepresented minority student shares above 25 percent, above 50 percent, and above 75 

percent. The former group subsumes the latter groups, but not the reverse. The reason for the 
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overlapping samples is that only a small fraction of Missouri high schools contain substantial 

minority student shares – e.g., the 75th percentile high school in the state distribution has a minority 

share of just 18 percent. The structure of our investigation allows us to balance our interest in 

examining effect heterogeneity across high schools that differ as much as possible along this 

dimension against the loss of statistical power as the sample shrinks. 

 Table 9 shows results from our courses-taken and courses-available models akin to Table 

4. For brevity, we only report findings from the fully specified models. As shown in the top panel 

of Table 9, like with the estimates from the full sample, we estimate a strong positive relationship 

between STEM courses taken in high school and initial enrollment in a STEM field. The 

magnitudes of the estimates are somewhat smaller in Table 9 than in Table 4, but lead to a similar 

conclusion. In contrast, the results from the degree attainment models in the last three columns, 

even when we use courses taken as the independent variable of interest, are much weaker than 

what we show for the full sample in Table 4 and not statistically significant.  

High attrition rates from STEM fields have been well documented, as have differential 

attrition rates by race/ethnicity (e.g., National Science Foundation, 2012). A potential explanation 

for the racial/ethnic attrition gaps suggested by previous research is that different groups are 

differentially prepared to succeed in STEM (e.g., Arcidiacono, Aucejo, & Spenner, 2012). Among 

students in high schools with large proportions of minority students, our results suggest that 

variation along at least this one dimension of preparation – high school STEM coursework – does 

not positively map to STEM success in college, even in models that embody endogeneity owing 

to students’ own course choices in high school.  

Moving to the models of course access in the bottom panel of the table, where we have 

more causal purchase, there is no evidence that increased exposure to STEM courses in high school 
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corresponds to improved STEM outcomes in college among students who attend high schools with 

a high proportion of minority students. If anything, the reverse is weakly suggested by the mostly 

negative point estimates, several of which are statistically significant or on the margin of being so. 

Inference is similar when using our other measures of course access and when we break out science 

and advanced/regular math courses (results available upon request). 

Next, in Table 10 we examine effect heterogeneity by race/ethnicity and gender at the 

individual student level, within high schools. Following Table 9, for race/ethnicity heterogeneity 

we focus on comparing white students to black and Hispanic students. The models interact our 

primary measure of course availability with indicators for students’ genders and race/ethnicities. 

Male and white students are the omitted comparison groups, and thus effects for all other groups 

are relative to them. For brevity, we show results only for the fully-specified models of course 

access. 

Column (1) shows results when the outcome is initial STEM enrollment. There is statistical 

evidence of effect heterogeneity by gender and race, but the magnitude is small to moderate. The 

coefficient for women of -0.13 percentage points, statistically significant at the 10 percent level, 

implies that a one-standard-deviation increase in course access during high school has an effect on 

STEM enrollment that is 0.47 percentage points lower relative to white men. For the race/ethnicity 

comparison, the -0.32 percentage point effect for underrepresented minority students relative to 

white men is somewhat larger and translates to a differential effect size of 1.2 percentage points, 

or 5.5 percent of the sample mean, for a one standard deviation increase in course access. When 

we turn to the model of degree attainment the race/ethnicity and gender gaps moderate and become 

statistically insignificant. 
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For both women and underrepresented minorities, and in both models, the overall effects 

of increased course access, inclusive of the main coefficient, are small and statistically 

insignificant. Moreover, the differential effects relative to white men are best described as small 

to moderate. Still, the direction of the findings is not encouraging about the prospects for using 

high school STEM access as a policy lever to promote STEM diversity. The results suggest that 

expanded course access in high school could modestly widen postsecondary STEM enrollment 

gaps by race and gender.20 

7. Conclusion 

We use administrative microdata from Missouri covering 14 cohorts of entering 

postsecondary students to examine the effects of access to STEM courses in high school on STEM 

outcomes in college. STEM interest and success in college are intermediary outcomes on the path 

toward a larger and more-diverse STEM workforce. Using multiple measures of STEM course 

access in high school, including measures that separate exposure to advanced coursework in math, 

we consistently show that changes in course access do not causally affect postsecondary STEM 

outcomes. 

Our preferred specifications focus on the reduced-form effects of course access. These 

models are conceptually appealing because they allow course access to improve student outcomes 

through additional pathways beyond direct course-taking. They are of interest from a policy 

perspective because a lack of available STEM courses in high schools has been postulated as a 

barrier to STEM entry and success in college (e.g., Deruy, 2016; President’s Council of Advisors 

on Science and Technology, 2010; Randazzo, 2017; White House, 2016). Moreover, policies that 

modify access to STEM coursework would be fairly straightforward to implement by state and 

                                                 
20 This is consistent with findings from Conger, Long and Iatarola (2009). 
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local education agencies, making them appealing in terms of feasibility, and create less risk for 

adverse unintended consequences than course-mandate policies (Allensworth, Lee, Montgomery, 

& Nomi, 2009; DiCicca & Lillard, 2001; Jacob, Dynarski, Frank, & Schneider, 2017). 

We also instrument for high school course-taking using variation in course access. While 

our first stage is statistically significant in a technical sense, course access is a weak instrument 

for course-taking. The weak predictive power of course access over course-taking is inconsistent 

with pent-up demand for STEM course-taking in high school. It implies that when afforded more 

access to STEM courses, high school students mostly substitute between other STEM courses. 

This helps to explain our null reduced-form findings for course access.  

We explore the potential for effect heterogeneity across high schools that differ by the share 

of underrepresented minority students, and within high schools by student race and gender. Our 

analysis of effect heterogeneity across high schools is motivated by the concern that access to 

STEM coursework is more restricted in high-minority high schools, in which case we might expect 

students to be more responsive to changes. However, we find no evidence of effect heterogeneity 

along this dimension. We also examine effect heterogeneity by race and gender within high 

schools. Our large data panel allows for a well-powered analysis in which we find some 

statistically significant differences, but they are modest in magnitude. The estimates suggest that 

postsecondary STEM outcomes for female and underrepresented minority students are less 

affected by access to STEM courses in high school than white male students. The implication is 

that broad, untargeted efforts to expand STEM access in high school may modestly exacerbate 

current race- and gender-based imbalances in STEM fields. 

We caution that our results may not be informative about changes in STEM course access 

outside of the range of observed values in our data. As an extreme example, our findings should 
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not be taken to imply that reducing STEM access in high school to zero would have no effect on 

postsecondary STEM outcomes. And while our reliance on natural variation in “business as usual” 

course offerings within high schools over time for identification is appealing in some ways, as 

discussed above, it also limits the range of research questions we can answer. For example, 

interventions to improve the quality of high school STEM education on the intensive margin may 

offer more promise. It is not clear what characteristics of intensive-margin interventions would 

drive change (again, our results imply class-size reductions alone will likely be ineffectual), but 

one possibility is the development of a deeper, more stable STEM curriculum, including a pipeline 

of STEM training that pre-dates high school enrollment. Variability in “stable” STEM curricula 

would occur mostly across high schools, making our estimation strategy ill-suited to speak to the 

potential effects. That said, evidence to date on more substantial STEM interventions, like STEM 

high schools, is not particularly promising (e.g., Wiswall et al., 2014). More broadly, changes on 

the intensive margin can be effective if the standard approach to STEM education in high school 

can be improved. Margins for improvement might include recruiting better teachers, changing 

student and teacher incentives, and improving STEM facilities and instructional materials.21 But 

if such improvements were obvious and feasible, they would likely already be implemented. 

Moreover, efforts to improve STEM education will crowd out resources targeted toward other 

types of learning given educational budget constraints. Noting these challenges, the lack of effects 

of simple expansions in course access that we document here suggest that for high school STEM 

                                                 
21 Evidence from Jackson (2010, 2014) suggests the use of incentives for teachers and students to spur advanced 
course-taking may be a promising option for improvement. However, the program Jackson studies is not targeted at 
STEM fields in high school and he does not focus on STEM outcomes in college, so the applicability of his findings 
to our context is uncertain.  
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policies to be effective at promoting postsecondary STEM interest and success, the norm of high 

school STEM instruction will need to change. 

 

  



33 
 

References 

Allensworth, E., Lee, V. E., Montgomery, N., & Nomi, T. (2009). College preparatory 
curriculum for all: Academic consequences of requiring algebra and English I for ninth 
graders in Chicago. Educational Evaluation and Policy Analysis, 31, 367–391. 

 
Altonji, J. G. (1995). The effects of high school curriculum on education and labor market 

outcomes. Journal of Human Resources, 30(3), 409-438. 
 
Altonji, J.G., Blom, E., Meghir, C. (2012). Heterogeneity in human capital investments: High 

school curriculum, college major, and careers. Annual Review of Economics, 4(1), 185-
223. 

 
Arcidiacono, P., Aucejo, E. & Spenner, K. (2012). What happens after enrollment? An analysis 

of the time path of racial differences in GPA and major choice. IZA Journal of Labor 
Economics, 1(1), 1-24. 

 
Bettinger, E., Evans, B., & Pope, D. 2013. Improving College Performance and Retention the 

Easy Way: Unpacking the ACT Exam. American Economic Journal: Economic Policy, 
5(2), 26-52. 

 
Bureau of Labor Statistics. 2014. STEM 101: Intro to Tomorrow’s Jobs. Occupational Outlook 

Quarterly (Spring 2014). (www.bls.gov/ooq) 
 
Carnevale, A.P., Fasules, M.L., Porter, A., & Landis-Santos, J. (2016). African Americans: 

College majors and earnings. Washington, DC: Georgetown University Center on 
Education and the Workforce. 

 
Committee on Prospering in the Global Economy of the 21st Century (2007). Rising above the 

gathering storm: Energizing and employing America for a brighter economic future. 
Washington DC: The National Academies Press. 

 
Conger, D., Long, M.C., and Iatarola, P. (2009). Explaining race, poverty and gender disparities 

in advanced course-taking. Journal of Policy Analysis and Management, 28(4), 555–576. 
 
Cortes, K. E., Goodman, J., & Nomi, T. (2015). Intensive math instruction and educational 

attainment: Long-run impacts of double-dose algebra. Journal of Human Resources, 50, 
108–158. 

 
DeCicca, P. P., & Lillard, D. R. (2001). Higher standards, more dropouts? Evidence within and 

across time. Economics of Education Review, 20, 459–473. 
 
Deruy, E. (2016). Where calculus class isn’t an option. The Atlantic (06.07.2016). Retrieved on 

10.23.2017 at https://www.theatlantic.com/education/archive/2016/06/where-calculus-
class-isnt-an-option/485987/  

 

https://www.theatlantic.com/education/archive/2016/06/where-calculus-class-isnt-an-option/485987/
https://www.theatlantic.com/education/archive/2016/06/where-calculus-class-isnt-an-option/485987/


34 
 

Fayer, S., Lacey, A., & Watson, A. (2017). STEM occupations: Past, present, and future. 
Washington, DC: U.S. Bureau of Labor Statistics. 

 
Jackson, K. (2014). Do College-Preparatory Programs Improve Long-Term Outcomes? 

Economic Inquiry 52(1), 72-99. 
 
Jackson, K. (2010). A Little Now for a Lot Later: A Look at a Texas Advanced Placement 

Incentive Program. Journal of Human Resources 45(3), 591-639. 
 
Jacob, B. (2001). Getting tough? The impact of high school graduation exams. Educational 

Evaluation and Policy Analysis, 23, 99–121. 
 
Jacob, B., Dynarski, S., Frank, K., & Schneider, B. (2017). Are expectations enough? Estimating 

the effect of a mandatory college-prep curriculum in Michigan. Educational Evaluation 
and Policy Analysis, 39(2), 333-360. 

 
Jenkins, K. N., Kulick, R. B., & Warren, J. R. (2006). High school exit examinations and state-

level completion and GED rates, 1975 through 2002. Educational Evaluation and Policy 
Analysis, 28, 131–152. 

 
Klopfenstein, K. (2004). Advanced placement: Do minorities have equal opportunity? 

Economics of Education Review, 23, 115–131. 
 
Levine, P.B. & Zimmerman, D.J. (1995). The benefit of additional math and science classes for 

young men and women. Journal of Business and Economic Statistics, 13(2), 137-149. 
 
Long, M., Conger, D., & Iatarola, P. (2012). Effects of high school course-taking on secondary 

and postsecondary success. American Educational Research Journal, 49(2), 285-322. 
 
Maltese, A.V. & Tai, R.H. (2011). Pipeline persistence: Examining the association of 

educational experiences with earned degrees in STEM Among U.S. students. Science 
Education, 95(5), 877-907. 

 
Papay, J. P., Murnane, R. J., & Willett, J. B. (2010). The consequences of high school exit 

examinations for low-performing urban students: Evidence from Massachusetts. 
Educational Evaluation and Policy Analysis, 32, 5–23. 

 
President’s Council of Advisors on Science and Technology. (2010). Prepare and inspire: K-12 

education in science, technology, engineering, and math (STEM) education for America’s 
future. Washington, DC: Executive Office of the President of the United States.  

 
National Research Council (2011). Successful K-12 STEM education: Identifying effective 

approaches in science, technology, engineering, and mathematics. Washington, DC: The 
National Academies Press.  

 



35 
 

Randazzo, M. (2017). Students shouldn’t live in STEM deserts. U.S. News & World Report 
(05.10.2017). Retrieved on 10.23.2017 at: https://www.usnews.com/opinion/knowledge-
bank/articles/2017-05-10/the-us-must-address-disparities-in-access-to-stem-education  

 
Rose, H. & Betts, J. R. (2004). The effect of high school courses on earnings. The Review of 

Economics and Statistics, 86, 497–513.  
 
Sadler, P. M., & Tai, R. H. (2007). The two high school pillars supporting college science. 

Science, 317, 457–458. 
 
Sass, T. (2015). Understanding the STEM Pipeline. CALDER Working Paper No. 125. 

Washington DC: CALDER. 
 
White House. (2016, February 11). STEM for all. [Blog post]. Retrieved from 

https://obamawhitehouse.archives.gov/blog/2016/02/11/stem-all.  
 
Wiswall, M., Stiefel, L., Schwartz, A.E., Boccardo, J. (2014). Does attending a STEM high 

school improve student performance? Evidence from New York City. Economics of 
Education Review 40, 93-105. 

  

https://www.usnews.com/opinion/knowledge-bank/articles/2017-05-10/the-us-must-address-disparities-in-access-to-stem-education
https://www.usnews.com/opinion/knowledge-bank/articles/2017-05-10/the-us-must-address-disparities-in-access-to-stem-education


36 
 

Figure 1: Trends in STEM Initial Major and Degrees by HS Cohort. 
 

(A) Initial Major 

 
 

(B) Degree, among all entrants 

 
 
Source: Administrative data on Missouri public HS students who matriculate into a Missouri public 4-year 
university. Notes: Locally weighted smoothed line (lowess) line. X-axis is year of high school graduation. UR Min = 
Underrepresented minority student (black or Hispanic). 
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Figure 2: Trends in High School STEM Course Access by HS Cohort. 
 

 
 
Source: Administrative data on Missouri public high school course offerings on average annually in grades 10-12., 
per 100 Students. Notes: Locally weighted smoothed line (lowess) line. X-axis is year of high school graduation. 
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Table 1: Sample Summary Statistics. 
  Mean SD Mean SD 
A. Students     
Male 44%  -- -- 
Female 56%  -- -- 
White 85%  -- -- 
Black 8%  -- -- 
Hispanic 2%  -- -- 
Asian 2%  -- -- 
Other race/ethnicity 3%  -- -- 
Age at entry 18.1 0.4 -- -- 
HS Class Rank (Percentile) 70.8 22.5 -- -- 
ACT English 23.3 5.1 -- -- 
ACT Math 22.7 4.7 -- -- 
Number of Students 141,579    
     
B. High Schools  School-year weighted Student weighted 
Graduates 102.2 108.6 261.7 160.2 
Enrollment 366.7 386.3 889.5 537.5 
Minority % 10% 20% 14% 19% 
Free and Reduced Price Lunch 29% 16% 22% 15% 
Urban 8%  18%  
Suburban 13%  32%  
Rural 80%  50%  
Number of High Schools 498    

Source: Administrative data on Missouri public HS students who matriculate into a Missouri public 4-year 
university. Notes: All numbers are annual.  
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Table 2: STEM Initial Majors and Degrees.  

Initial STEM 
major, all 
entrants 

STEM 
Degree, 

all entrants 

STEM 
Degree, 

all graduates 

STEM 
Degree, 

Initial STEM 
majors 

STEM 
Degree, 

Initial non-
STEM 
majors 

All Students 21% 12% 20% 43% 4% 
      
Male 31% 18% 31% 46% 6% 
Female 14% 8% 12% 38% 3%  

     
White 21% 13% 20% 44% 4% 
Black 18% 6% 16% 24% 2% 
Hispanic 22% 11% 20% 39% 3% 
Asian 31% 21% 34% 51% 8% 

Source: Administrative data on Missouri public HS students who matriculate into a Missouri public 4-year 
university. Notes: Degree reflects degree acquisition in six years.  
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Table 3: Math and Science Courses Taken and Course Availability in High School. 

 Courses Taken 
Course 

Availability 

Course 
Availability Per 

100 Students 
Topic 

Availability 

Topic 
Availability Per 

100 Students 
All students 7.1 (2.9) 85.2 (47.4) 10.8 (3.6) 24.5 (8.3) 4.5 (4.2) 
           
STEM degree recipients 8.3 (3.1) 88.1 (47.7) 10.7 (3.5) 24.9 (8.2) 4.3 (4.1) 
Non-STEM degree recipients 7.3 (3.1) 87.9 (48.0) 10.7 (3.5) 24.8 (8.2) 4.4 (4.1) 
           
Male 7.2 (2.8) 86.2 (47.1) 10.7 (3.4) 24.6 (8.2) 4.4 (4.1) 
Female 7.1 (2.9) 84.4 (47.6) 10.9 (3.6) 24.3 (8.4) 4.6 (4.3) 
           
White 7.1 (2.9) 83.3 (47.7) 10.9 (3.6) 24.3 (8.1) 4.7 (4.3) 
Black 6.6 (2.2) 97.2 (43.0) 10.7 (3.8) 24.6 (9.9) 3.1 (2.6) 
Hispanic 7.1 (2.7) 95.7 (43.7) 10.3 (2.8) 26.3 (8.0) 3.6 (3.1) 
Asian 8.2 (2.9) 103.2 (42.1) 10.0 (2.5) 26.6 (8.2) 3.1 (2.4) 

Source: Administrative data on Missouri public HS students who matriculate into a Missouri public 4-year university. Notes: Standard deviation in parentheses. 
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Table 4: STEM Major and Degree Attainment Models. 
 Initial Major Degree Attainment 
 (1) (2) (3) (4) (5) (6) 
A. Courses Taken       
Courses Taken 0.0137 0.0142 0.0142 0.0060 0.0060 0.0057 
 (0.0008)*** (0.0008)*** (0.0007)*** (0.0005)*** (0.0005)*** (0.0005)*** 
       
B. Course Availability       
CA Per 100 0.0012 0.0002 0.0004 0.0002 0.0011 0.0003 
 (0.0005)** (0.0006) (0.0008) (0.0003) (0.0003)*** (0.0007) 
       
Individual controls & Year FE  X X X X X X 
HS Controls  X X  X X 
HS FE   X   X 
       
N 141,579 141,579 141,579 141,579 141,579 141,579 

Source: Administrative data on Missouri public HS students who matriculate into a Missouri public 4-year university. Notes: CA Per 100 = courses available per 
100 students.  Each coefficient is from a separate regression. All models control for high school graduation year (year fixed effects). Student controls are 
race/ethnicity and gender, ACT math and English scores, and high school class rank. High school controls include location (urban, suburban, or rural; this factor 
drops out with the inclusion of HS fixed effects), enrollment, percent of the student body that identifies as a minority race/ethnicity, and percent of the student 
body which is free or reduced price lunch eligible. Standard errors clustered by high school included in parentheses. 
*** p<0.01, ** p<0.05, * p<0.10 
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Table 5: STEM Major and Degree Attainment Models, with Course-Type Heterogeneity. Courses Available Only. 
 Initial Major Degree Attainment 
 (1) (2) (3) (4) (5) (6) (7) (8) 
Advanced Math CA Per 100 -0.0014 -0.0013  -0.0019 0.0006 0.0004  -0.0000 
 (0.0023) (0.0023)  (0.0024) (0.0017) (0.0017)  (0.0018) 
Standard Math CA Per 100  0.0007  0.0003  -0.0011  -0.0014 
  (0.0021)  (0.0022)  (0.0018)  (0.0019) 
Science CA Per 100   0.0009 0.0011   0.0007 0.0009 
   (0.0011) (0.0012)   (0.0010) (0.0011) 
         
Individual controls & Year FE X X X X X X X X 
HS Controls X X X X X X X X 
HS FE X X X X X X X X 
         
N 141,579 141,579 141,579 141,579 141,579 141,579 141,579 141,579 

Source: Administrative data on Missouri public HS students who matriculate into a Missouri public 4-year university. Notes: CA Per 100 = courses available per 
100 students.  All models control for high school fixed effects, student race/ethnicity and gender, student ACT math and English scores, student high school class 
rank, enrollment in the high school, percent minority in the school, percent free/reduced price lunch in the school, and high school graduation year (year fixed 
effects). Standard errors clustered by high school included in parentheses. 
*** p<0.01, ** p<0.05, * p<0.10 
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Table 6: Results from First Stage Regressions of Course Taking on Course Availability. 
 (1) (2) 
CA Per 100 0.0411 0.0208 
 (0.0108)*** (0.0091)** 
   
Kleibergen-Paap LM statistic p-value 0.00 0.03 
Kleibergen-Paap Wald F-statistic 14.42 5.22 
   
Individual & HS controls & Year FE X X 
HS FE  X 
   
N 141,579 141,579 

Source: Administrative data on Missouri public HS students who matriculate into a Missouri public 4-year 
university. Notes: CA Per 100 = courses available per 100 students. All models control for high school graduation 
year (year fixed effects). Student controls are race/ethnicity and gender, ACT math and English scores, and high 
school class rank. High school controls include location (urban, suburban, or rural; this factor drops out with the 
inclusion of HS fixed effects), enrollment, percent of the student body that identifies as a minority race/ethnicity, 
and percent of the student body which is free or reduced price lunch eligible. Standard errors clustered by high 
school included in parentheses. 
*** p<0.01, ** p<0.05, * p<0.10 
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Table 7: STEM Major and Degree Attainment Models, 2SLS Estimates. 
 Initial Major Degree 
 (1) (2) (3) (4) 
Instrumented Courses Taken 0.0049 0.0205 0.0274 0.0129  
 (0.0142) (0.0379) (0.0095)*** (0.0322) 
     
Individual & HS controls & Year FE X X X X 
HS FE  X  X 
     
N 141,579 141,579 141,579 141,579 

Source: Administrative data on Missouri public HS students who matriculate into a Missouri public 4-year 
university. Notes: CA Per 100 = courses available per 100 students. All models control for high school graduation 
year (year fixed effects). Student controls are race/ethnicity and gender, ACT math and English scores, and high 
school class rank. High school controls include location (urban, suburban, or rural; this factor drops out with the 
inclusion of HS fixed effects), enrollment, percent of the student body that identifies as a minority race/ethnicity, 
and percent of the student body which is free or reduced price lunch eligible. Standard errors clustered by high 
school included in parentheses. 
*** p<0.01, ** p<0.05, * p<0.10 
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Table 8: STEM Major and Degree Attainment Models, Various Time Periods. Courses Available Only. 
  Split Panel in Half Split Panel in Thirds 
 All Years 1996-2002 2003-2009 1996-2000 2001-2005 2006-2009 
 (1) (2) (3) (4) (5) (6) 
A. Initial Major       
CA Per 100 0.0004 0.0008 0.0012 0.0012 -0.0025 0.0005 

 (0.0008) (0.0014) (0.0012) (0.0018) (0.0021) (0.0020) 
       
B. Degree       
CA Per 100 0.0003 0.0006 0.0014 0.0004 0.0027 0.0022 
 (0.0007) (0.0010) (0.0009) (0.0015) (0.0017) (0.0013)* 
       
Indiv. & HS controls & Year FE X X X X X X 
HS FE X X X X X X 
       
N 141,579 69,166 72,413 48,411 51,370 41,798 

Source: Administrative data on Missouri public HS students who matriculate into a Missouri public 4-year university. Notes: CA Per 100 = courses available per 
100 students. All models control for high school fixed effects, student race/ethnicity and gender, student ACT math and English scores, student high school class 
rank, enrollment in the high school, percent minority in the school, percent free/reduced price lunch in the school, and high school graduation year (year fixed 
effects). Standard errors clustered by high school included in parentheses. 
*** p<0.01, ** p<0.05, * p<0.10 
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Table 9: STEM Major and Degree Attainment Models, by High School Racial/Ethnic Composition. 
 Initial Major Degree Attainment 
 Minority > 25% Minority > 50% Minority > 75% Minority > 25% Minority > 50% Minority > 75% 
A. Courses Taken       
Courses Taken 0.0084 0.0082 0.0114 0.0014 0.0008 0.0015 

 (0.0012)*** (0.0013)*** (0.0018)*** (0.0010) (0.0012) (0.0017) 
       
B. Course Availability       
CA Per 100 -0.0022 -0.0061 -0.0061 -0.0018 -0.0005 0.0005 

 (0.0014) (0.0036)* (0.0044) (0.0007)** (0.0014) (0.0014) 
       
Indiv. & HS controls & Year FE X X X X X X 
HS FE X X X X X X 
       
N  17206 8959 4069 17206 8959 4069 

Source: Administrative data on Missouri public HS students who matriculate into a Missouri public 4-year university. Notes: The high school underrepresented 
minority shares are calculated as the sample average enrollment shares of black plus Hispanic students from NCES data, covering all students and over our full 
data panel. CA Per 100 = courses available per 100 students. All models control for high school fixed effects, student race/ethnicity and gender, student ACT 
math and English scores, student high school class rank, enrollment in the high school, percent minority in the school, percent free/reduced price lunch in the 
school, and high school graduation year (year fixed effects). Standard errors clustered by high school included in parentheses.  
*** p<0.01, ** p<0.05, * p<0.10 
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Table 10: STEM Major and Degree Attainment Models, with Race/Ethnicity Heterogeneity. 
Courses Available Only. 
 Initial Major Degree 
 (1) (2) 
CA per 100 0.0017 0.0006 
 (0.0011) (0.0008) 
CA per 100 X Female -0.0013 -0.0001 
 (0.0008)* (0.0007) 
CA per 100 X Underrepresented Minority -0.0032 -0.0011 
 (0.0011)*** (0.0008) 
   
Indiv. & HS controls & Year FE X X 
HS FE X X 
   
N 133,949 133,949 

Source: Administrative data on white, black, and Hispanic Missouri public HS students who matriculate into a 
Missouri public 4-year university. Notes: CA Per 100 = courses available per 100 students. All models control for 
high school fixed effects, student race/ethnicity and gender, student ACT math and English scores, student high 
school class rank, enrollment in the high school, percent minority in the school, percent free/reduced price lunch in 
the school, and high school graduation year (year fixed effects). Standard errors clustered by high school included in 
parentheses.  
*** p<0.01, ** p<0.05, * p<0.10
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Appendix: Supplementary Tables 
 
Appendix Table A1: The Effect of STEM Course Access on College Matriculation, and the Composition of the Public 4-Year Sample 
as Measured by Observable Pre-College Academic Qualifications. 
 

% of 
Graduates 
Attending 
College 

(Any State 
or Level) 

% of 
Graduates  

Attending a 
4-year 

College 
(Any State) 

% of 
Graduates 

Attending a 
2-year 

College 
(Any State) 

# of 
Graduates 

Attending a 
4-year 
Public 

College in 
MO 

HS Class 
Rank 

ACT Math 
Score 

ACT 
English 
Score 

 (1) (2) (3) (4) (5) (6) (7) 
CA Per 100 -0.0003 0.0003 -0.0004 0.0242 0.1064 -0.0043 -0.0088 
 (0.0004) (0.0004) (0.0005) (0.0341) (0.0545)* (0.0096) (0.0115) 
        
HS controls & Year FE X X X X X X X 
HS FE X X X X X X X 
        
Dependent Variable Mean 
(Standard Deviation) 

0.357 
(0.159) 

0.234 
(0.132) 

0.630 
(0.150) 

21.31 
(30.23) 

74.88 
(12.64) 

22.23 
(2.65) 

23.03 
(2.88) 

        
N (high-school-by-year) 6552 6552 6552 6644 6644 6644 6644 

Notes: The models presented in this table are estimated at the level of the high school cohort (i.e., high-school and graduation year). In columns 1-3, the 
denominator is the number of students who graduated from each high school in each year, and the numerator is number of students who matriculated to any 
college in any state, who matriculated to a 4-year college in any state, and who matriculated to a 2-year college in any state, respectively. The source of the 
college going-data in columns 1-3 is from high school self-reports. Note that the sample of high-school years is lower than in our full analytic sample (as in 
columns 4-7) because we are missing reported college matriculation rates for about 1 percent of high-school-year observations. In column 4, the dependent 
variable is the number of students who matriculated to a 4-year public university in Missouri. In columns 5-7, the dependent variables are the average class rank, 
ACT math, or ACT English score, averaged across graduates who matriculated to a 4-year public university in Missouri from each high school and graduation 
year. CA Per 100 = high school STEM courses available per 100 students, which is the treatment variable of interest in the main text. The models include high 
school and year fixed effects and controls for enrollment in the high school, percent minority in the high school, and percent free/reduced price lunch in the 
school. Standard errors clustered by high school included in parentheses.  
*** p<0.01, ** p<0.05, * p<0.10 
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Appendix Table A2. Public 4-Year Universities in Missouri 

University Enrollment Entry Share % of STEM Entrants % of STEM Graduates 
Overall 1.00 1.00 1.00 
Univ of Missouri-Columbia 0.27 0.35 0.37 
Univ of Missouri Science & Technology 0.04 0.20 0.22 
Univ of Central Missouri 0.10 0.08 0.08 
Missouri State Univ 0.16 0.08 0.07 
Truman State Univ 0.06 0.07 0.06 
Southeast Missouri State Univ 0.09 0.06 0.05 
Northwest Missouri State Univ 0.07 0.04 0.05 
Univ of Missouri -Kansas City 0.04 0.03 0.04 
Western Missouri State Univ 0.07 0.04 0.03 
Univ of Missouri -St. Louis 0.03 0.02 0.02 
Missouri Southern State Univ 0.04 0.03 0.02 
Lincoln Univ 0.02 0.01 0.01 
Harris Stowe State Univ 0.01 0.00 0.00 

Source: Administrative data on Missouri public HS students who matriculate into a Missouri public 4-year university. Notes: Ordered 
by the number of STEM graduates.   
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Appendix Table A3: STEM Major and Degree Attainment Models. Courses Available Only; Alternative Measures of Course 
Availability in High School. 

 (1) (2) (3) (4) (5) (6) 
A. Courses Availability       
Unadjusted  
course availability -0.0002 0.0000 0.0001 0.0000 0.0001 0.0000 
 (0.0000)*** (0.0002) (0.0001) (0.0000) (0.0001) (0.0001) 
       
B. Topic Availability       
Topic availability 
Per 100 students 0.0012 -0.0001 0.0010 -0.0001 0.0008 0.0001 
 (0.0004)*** (0.0005) (0.0012) (0.0003) (0.0003)** (0.0010) 
       
Individual controls & Year FE X X X X X X 
HS controls  X X  X X 
HS FE   X   X 
       
N 141,579 141,579 141,579 141,579 141,579 141,579 

Source: Administrative data on Missouri public HS students who matriculate into a Missouri public 4-year university. Notes: Each coefficient is from a separate 
regression. The course-availability measure is panel A is substantively the same as in our main models, but not adjusted for student enrollment – e.g., it captures 
the raw number of courses to which students have access in high school. The topic availability measure in panel B is enrollment-adjusted, but does not count 
additional sections of the same course as new courses, as described in the text. All models control for high school graduation year (year fixed effects). Student 
controls are race/ethnicity and gender, ACT math and English scores, and high school class rank. High school controls include location (urban, suburban, or 
rural; this factor drops out with the inclusion of HS fixed effects), enrollment, percent of the student body that identifies as a minority race/ethnicity, and percent 
of the student body which is free or reduced price lunch eligible. Standard errors clustered by high school included in parentheses. 
*** p<0.01, ** p<0.05, * p<0.10
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Appendix Table A4: Results from Separate First Stage Regressions of Course Taking on Course 
Availability and Topic Availability. 
 (1) (2) 
A. Courses Availability   
Unadjusted Course Availability 0.0078 0.0045 
 (0.0024)*** (0.0017)*** 
   
Kleibergen-Paap LM statistic p-value 0.00 0.01 
Kleibergen-Paap Wald F-statistic 10.52 6.86 
   
B. Topic Availability   
Topic Availability Per 100 students 0.0165 0.0097 
 (0.0099)* (0.0124) 
   
Kleibergen-Paap LM statistic p-value 0.08 0.44 
Kleibergen-Paap Wald F-statistic 3.17 0.61 
   
Individual & HS controls & Year FE X X 
HS FE  X 

Source: Administrative data on Missouri public HS students who matriculate into a Missouri public 4-year 
university. Notes: Each coefficient is from a separate regression. All models control for high school graduation year 
(year fixed effects). Student controls are race/ethnicity and gender, ACT math and English scores, and high school 
class rank. High school controls include location (urban, suburban, or rural; this factor drops out with the inclusion 
of HS fixed effects), enrollment, percent of the student body that identifies as a minority race/ethnicity, and percent 
of the student body which is free or reduced price lunch eligible. Standard errors clustered by high school included 
in parentheses. 
*** p<0.01, ** p<0.05, * p<0.10 
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Appendix Table A5: Results from Combined First Stage Regressions of Course Taking on 
Unadjusted Course Availability and Topic Availability. 
 (1) (2) 
   
Unadjusted Course Availability 0.0076 0.0044 
 (0.0024)*** (0.0017)** 
Topic Availability Per 100 students 0.0146 0.0022 
 (0.0101) (0.0127) 
   
Kleibergen-Paap LM statistic p-value 0.01 0.03 
Kleibergen-Paap Wald F-statistic 6.07 3.52 
   
Individual & HS controls & Year FE X X 
HS FE  X 

Source: Administrative data on Missouri public HS students who matriculate into a Missouri public 4-year 
university. Notes: All models control for high school graduation year (year fixed effects). Student controls are 
race/ethnicity and gender, ACT math and English scores, and high school class rank. High school controls include 
location (urban, suburban, or rural; this factor drops out with the inclusion of HS fixed effects), enrollment, percent 
of the student body that identifies as a minority race/ethnicity, and percent of the student body which is free or 
reduced price lunch eligible. Standard errors clustered by high school included in parentheses. 
*** p<0.01, ** p<0.05, * p<0.10 
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