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Abstract 
 

We study the relative performance of two policy relevant value-added models – a one-step fixed effect model 

and a two-step aggregated residuals model – using a simulated dataset well grounded in the value-added 

literature. A key feature of our data generating process is that student achievement depends on a continuous 

measure of economic disadvantage. This is a realistic condition that has implications for model performance 

because researchers typically have access to only a noisy, binary measure of disadvantage. We find that one- 

and two-step value-added models perform similarly across a wide range of student and teacher sorting 

conditions, with the two-step model modestly outperforming the one-step model in conditions that best match 

observed sorting in real data. A reason for the generally superior performance of the two-step model is that it 

better handles the use of an error-prone, dichotomous proxy for student disadvantage. 
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1. Introduction 

Value-added models (VAMs) are a commonly-used tool in research and policy applications 

for measuring how teachers affect student achievement. Recent experimental and quasi-experimental 

evaluations show that teacher value-added is a forecast-unbiased measure of teacher quality on 

average, at least in selected locales (Bacher-Hicks, Kane, and Staiger, 2014; Chetty, Freidman, and 

Rockoff, 2014; Kane, McCaffrey, Miller, and Staiger, 2013; Cullen, Koedel, and Parsons, 2016), and a 

large literature documents the informational content of value-added more broadly.1 Numerous states 

and school districts across the U.S. have implemented systems that incorporate student achievement 

growth, typically in the form of value-added or a similar metric, into teacher evaluations (Steinberg 

and Donaldson, 2016).  

The contribution of the present study is to empirically examine the relative performance of 

two value-added models (VAMs): a “one-step VAM” and a “two-step VAM” (or “aggregated residuals 

VAM”). In addition to being common in research, both modeling structures have been used as policy 

tools by state and local education agencies in recent years. The policy and political considerations 

associated with the choice between the two models are covered in Ehlert, Koedel, Parsons, and 

Podgursky (2014, 2016). This study provides a complementary technical evaluation focused on how 

the models identify teacher effects and implications for estimation accuracy. 

We evaluate one- and two-step VAMs using a flexible, simulated dataset where the data 

generating process (DGP) is well-grounded in research and reflects realistic sorting conditions. Two 

aspects of our DGP are particularly important. First, we generate student test scores by calibrating the 

simulated data to match empirical regularities established by a large body of previous value-added 

                                                 
1 The literature is too large to list all of the studies here. Notable examples of research linking value-added to other 
measures of teacher quality include Harris and Sass (2014), Jacob and Lefgren (2008), and Kane, Taylor, Tyler, and 
Wooten (2011). See Koedel, Mihaly, and Rockoff (2015) for a literature review; recent studies by Chetty et al. (2017) and 
Rothstein (2017) continue the debate over the quality of value-added measures. 
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research. A well-known but oft-ignored aspect of education research is that the commonly-used 

poverty measure, free/reduced-price meal (FRM) status, is coarse and error prone (USDA, 2007; Bass, 

2010; Harwell and LeBeau, 2010; Hoffman, 2012; Michelmore and Dynarski, 2017). We build this 

aspect of real-world evaluations into our simulations by generating student scores using a continuous 

measure of income parameterized based on Chetty et al. (2014), and then mimicking the proxy 

approach to controlling for poverty with the binary and noisy FRM indicator. To the best of our 

knowledge, we are the first to examine the effect of measurement error in controls for student 

disadvantage on value-added estimation.  

The second, complementary aspect of our simulation design is that we create a baseline sorting 

scenario of students to schools that reflects real world sorting. The DGP governing student sorting is 

based on data from Census tracts that we map onto elementary-school catchment areas in eight urban 

and suburban school districts in the Kansas City, Missouri metropolitan area. Income distributions 

available at the Census-tract level allow us to construct a realistic student sorting condition by income. 

Our baseline sorting condition is an intuitive reference point for thinking about alternative sorting 

scenarios.   

A key feature differentiating the two VAMs we evaluate is the source of identifying variation 

used to estimate the control-variable coefficients. In the one-step VAM, identification is achieved 

entirely by leveraging within-teacher variation, while the two-step VAM leverages both within- and 

between-teacher variance. A concern with the one-step VAM that has gone unaddressed in previous 

research is that its reliance on within-teacher variation, combined with the fact that the control 

variables are measured with error (in particular, FRM status), results in amplified attenuation bias in 

the control-variable coefficients (e.g., see Ashenfelter and Krueger, 1994; Griliches, 1979). This can 

lead to the model failing to fully control for student characteristics, thereby causing bias in estimates 

of teacher value-added. In contrast, attenuation bias in control-variable coefficients is less of a concern 
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with the two-step VAM because it does not rely solely on within-teacher variance for identification. 

However, in the presence of non-random sorting of students to teachers, the two-step VAM has the 

potential to “overcorrect” for student characteristics, generating a different type of bias.  

We are not the first to compare these modeling structures in terms of technical performance, 

although the literature is thin given the research and policy importance of model selection. Chetty et 

al. (2014) estimate both types of models and find that the two-step approach has marginally lower 

average forecasting bias, but this result is not focal to their analysis and they provide no explanation. 

Guarino, Reckase, and Wooldridge (2015) and Guarino, Maxfield, Reckase, Thompson, and 

Wooldridge (2015) examine these two modeling structures, among others, in related simulation 

studies. They find that the one-step VAM generally outperforms the two-step VAM, but their data 

generating process does not allow student covariates to affect achievement beyond lagged test scores. 

This goes against substantial empirical evidence that student characteristics predict current 

achievement even conditional on lagged performance.2 In another simulation study, Zamarro, 

Engberg, Saavedra, and Steele (2015) allow for student disadvantage to impact student test scores but 

only consider models that control for student disadvantage perfectly; i.e., they do not incorporate 

measurement error into their analysis. These previous simulation studies also only consider fairly 

extreme student-teacher sorting conditions – i.e., random student-teacher assignments or assignments 

with a strong correspondence between teacher quality and student performance. 

We find that one- and two-step VAMs perform similarly over a wide range of estimation 

conditions. Under the most realistic conditions, estimates from the two-step VAM are more accurate. 

Only when sorting conditions become extreme does the one-step VAM outperform the two-step 

                                                 
2  Examples of studies showing that student characteristics predict achievement conditional on lagged scores include 
Goldhaber, Walch, and Gabele (2013) and Johnson, Lipscomb, and Gill (2015). The conditional importance of student 
characteristics is likely driven in part by imperfect accounting for measurement error in lagged tests (Lockwood and 
McCaffrey, 2014) but is an empirical regularity nonetheless. 
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VAM. The reason the two-step model generally performs better is that it is less adversely affected by 

the use of an error-prone, dichotomous proxy for student disadvantage. A somewhat surprising result 

is that concern about overcorrection bias in the two-step VAM is of little practical importance in the 

most plausible student-teacher sorting scenarios. This is because while control-variable coefficients in 

the two-step VAM exhibit less attenuation bias, they are still attenuated to some degree, which by 

itself pushes the model toward favoring teachers of high-income students. The two-step VAM’s 

overcorrection bias works in the opposite direction, and as such leads to an improvement in the 

accuracy of value-added estimates. 

2. Models and Theoretical Rationale 

This section provides theoretical background for the models. Portions of the text draw on and 

extend the conceptual framework in Ehlert et al. (2016). 

2.1 One-Step (Fixed Effect) Value-Added Models 

The one-step VAM is the most prevalent modeling structure in research studies that estimate 

teacher value-added (e.g., Aaronson, Barrow, and Sander, 2007; Goldhaber and Hansen, 2010; 

Hanushek, Kain, O’Brien, and Rivkin, 2005; Rothstein, 2010) and is currently used in some policy 

applications. The precise set of conditioning variables changes across applications of the model, but 

the general structure is as follows:  

0 ( 1) 1ijst ijs t ijstY Yβ β ε−= + + + + +ist 2 st 3 sX β X β θ       (1) 

In (1), ijstY  is a test score for student i in subject j taught by teacher s in year t, istX  is a vector of 

student characteristics for student i, stX  is a vector of teacher-average student characteristics in year-

t, sθ  is a vector of teacher fixed effects, and ijstε  is the error term. Typical controls in the X-vector 

include student race, gender, FRM eligibility, English-language-learner status, special education status, 

mobility status, and grade-level.  
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 The identifying condition for equation (1) to recover unbiased, causal estimates of teacher 

effects is that the control variables are sufficient to capture student-teacher sorting; i.e., teacher 

assignments to students are conditionally independent. Even if we assume all relevant factors that 

influence sorting are included in the models conceptually, how they are included and measured has 

implications for whether they under- or over-correct for student circumstances, which can affect the 

accuracy of value-added estimates. A related concern is about the ability of VAMs to account for prior 

student performance in the presence of test measurement error (e.g., see Lockwood and McCaffrey, 

2014), a point that we return to in more detail below. 

By virtue of the one-step estimation, the coefficient vectors 2β  and 3β  in equation (1) are 

identified using within-teacher variation only. Specifically, the coefficients on individual student 

characteristics ( 2β ) are identified by comparing students who differ along observed dimensions with 

the same teacher, and the coefficients for the teacher-averaged characteristics ( 3β ) are identified using 

variation in the classroom composition of students taught by the same teacher over time. As a concrete 

example of the latter, for an elementary teacher with classrooms where the share of FRM-eligible 

students is 0.80, 0.85, and 0.78 over a three year period, this is the variation used to identify the effect 

on test scores, rather than (what would typically be much larger) differences across teachers.  

While conceptually appealing, relying exclusively on within-teacher variance for identification 

exacerbates attenuation bias in control-variable coefficients from measurement error (see Ashenfelter 

and Krueger, 1994; Griliches, 1979). To illustrate, we use a simple bivariate example analogous to 

controlling for classroom-average characteristics in equation (1). In the example, we have a single 

regressor, ,stZ  observed for each unit, s, over two time periods, t, where *
st st stZ Z ξ= + . *

stZ  is the true 

value and stξ  is classical measurement error with 2var( )st ξξ σ=  for t = 1,2 and 1 2cov( , ) 0.s sξ ξ =  
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Consider estimating ordinary least squares (OLS) and fixed-effects (FE) coefficients, denoted by ,δ  

from the following regressions: 

ist st OLS istY Z uδ= +           (2) 

ist st FE s istY Z eδ ψ= + +          (3)  

The FE coefficient in the presence of classical measurement error in stZ  is attenuated more than the 

OLS coefficient, as can be seen by the following formulas taken from Ashenfelter and Krueger (1994): 

 
*

)var(lim 1
v

ˆ
) var(ar( )OLS OLSp

Z
ξδ δ

ξ
 

= − 
 +

        (4) 

 
( )*

)ˆ
) va

var(lim 1
var r( (1 )( )

FE FE
Z

p ξδ δ
ξ ρ

 
 = −
   + − 

       (5) 

Above, OLSδ  and FEδ  represent population regression coefficients in the absence of measurement 

error. *var( )Z  is the variance of the true underlying values and var( )ξ  is the measurement error 

variance, with *var( ) var( ) var( )Z Z ξ= +  (with classical measurement error, *cov( , ) 0Z ξ = ). In 

equation (5), ρ  is the correlation between 1sZ  and 2sZ , which will be large and positive in many 

contexts, including ours (i.e., the average characteristics of students assigned to a teacher in 

consecutive years are likely highly correlated). This implies potentially significant attenuation bias in 

the FE estimator relative to OLS. In fact, under the right conditions, bias from measurement error 

could even lead to ˆ
FEδ  being estimated with the wrong sign. For example, if the error-variance share 

is 0.10 then ρ  above 0.90 would produce a negative value for 
( )*

var(1
var( )

)
) v (1ar( )Z

ξ
ξ ρ

 
 −
  −  +

. This 

scenario is not implausible – for example, in Missouri, the year-to-year correlation in the school-level 

percentage of FRM-eligible students is 0.95, and it is reasonable to believe that similar conditions may 

be met in other settings. When we estimate one- and two-step VAMs at the school level using data 
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from Missouri, the coefficient on the FRM eligibility share is negative and significant using the two-

step VAM but positive and significant using the one-step VAM (results suppressed for brevity).3  

In summary, the sole reliance on within-teacher variance to identify 2β  and 3β  will cause 

amplified attenuation bias in equation (1). The implication is that the model will “undercorrect” for 

student circumstances and bias estimates of teacher value-added in favor of teachers who teach more 

advantaged students in more advantaged environments. The problem will be most severe when 

student characteristics, and in particular teacher-averaged student characteristics, are important 

predictors of student outcomes and measured with error. Student FRM eligibility – the focal control 

variable in our study – has been shown to be particularly coarse and error-prone (USDA, 2007; Bass, 

2010; Harwell and LeBeau, 2010; Hoffman, 2012; Michelmore and Dynarski, 2017). 

2.2 Two-Step (Aggregated Residuals) Value-Added Models 

The two-step analog to the one-step VAM shown in equation (1) is: 

0 ( 1) 1ijst ijs t ijstY Yγ γ η−= + + + +ist 2 st 3X γ X γ        (6) 

ijst ijstη ζ= +sτ           (7) 

The variables in equation (6) are as defined above; sτ  in equation (7) is the vector of teacher effects 

analogous to sθ  in equation (1).  

The key distinguishing feature of the two-step VAM is that it partials out differences in test-

score performance between students with different characteristics, and in different schooling 

environments, before estimating the teacher effects. The two-step model has been used to estimate 

teacher effects in recent high-profile research studies (Chetty et al., 2014; Kane et al., 2013) and also 

in policy applications. 

                                                 
3 The intuition conveyed here is also informative for thinking about measurement error in the FRM indicator for 
individual students, although the structure of measurement error is not the same owing to the binary classifications. 
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Via the two-step estimation, the control-variable coefficients are not subject to the same 

degree of attenuation bias as in the one-step VAM (although they are not immune entirely, per 

equation (4)). The tradeoff is that due to the sequential estimation, the two-step VAM attributes all 

differences between students along the measured dimensions in equation (6) to those characteristics. 

Most pressing for the present application is that differences in teacher quality may align with student 

characteristics, in which case they are purged from the residuals prior to estimating equation (7). The 

implication is that the two-step VAM will “overcorrect” for student characteristics, leading to biased 

estimates of teacher value-added. 

2.3 Empirical Bayes Models 

 We also briefly discuss Empirical Bayes (EB) models, which have been evaluated in other 

recent simulation studies (Guarino, Reckase, and Wooldridge, 2015; Guarino et al., 2015; Zamarro et 

al., 2015), often in comparison to variants of the one and two-step VAMs. Empirically, EB estimates 

are a middle ground between estimates from the one- and two-step VAMs. To see why, note that EB 

estimates can be calculated via generalized least squares by partially demeaning the control variables, 

as shown in this EB analog to equation (1): 

0 ( 1) ( 1) 1( ) ( ) ( ) ( )ijst ijt ijs t ij t ijst ijtY Y Y Yκ β κ β κ κ υ κυ− −− = + − + − + − + −ist it 2 st t 3X X β X X β   (8) 

where ijst s ijstυ ψ ω= +  is a composite error consisting of a teacher random effect, ,sψ  and a residual 

error term. The means that are subtracted from each term in equation (8) are calculated at the teacher-

level, and the weighting factor, ,κ  is a model parameter that falls between 0 and 1. κ  is a function of 

the variance of the teacher random effects, the variance of the error term, and the number of 

observations per teacher ( sn ), with lim 1
sn

κ
→∞

=  (Wooldridge, 2000).  

The above transformation is insightful for comparing the EB model to the one and two-step 

VAMs. Specifically, if 0κ =  then equation (8) is equivalent to the first-step of the two-step model 
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(equation (6)), while if 1κ =  then equation (8) is equivalent to the teacher fixed effects model in 

equation (1). Thus, the one- and two-step models bound the EB model. In results omitted for brevity, 

we confirm this intuition by showing that output for the EB model consistently falls in-between the 

output from one- and two-step VAMs, as expected. Given this intuitive result, we focus the analysis 

below on the one- and two-step VAMs, acknowledging that EB estimates are an in-between case. 

3. Simulation Details 

3.1 Overview 

 Table 1 provides detailed documentation of our simulation structure. We begin with a baseline 

condition where students sort to schools by family income as indicated by the overlap of Census tracts 

and school catchment areas (see below for details), teachers are randomly assigned to schools, and 

students are randomly assigned to teachers within schools. We set targets for key coefficient estimates 

from the one- and two-step VAMs in this baseline condition, where the targets are taken from the 

value-added literature. The target values are shown in the “Targets” column of Table 1, with key 

references listed in the “Sources” column. The “Final Baseline Values” columns show the final 

parameter values used in the DGP and estimates taken from regressions based on our simulated data. 

The calibration process is iterative and complex given the many dimensions that we target per Table 

1. In essence, it can be summarized as follows: we reverse-engineer a DGP by producing a simulated 

dataset that, when put into the standard regression frameworks, produces estimates consistent with 

what researchers have found in analyses of real data along numerous dimensions.4 

Before getting into the details of how we construct the DGP, it is instructive to briefly touch 

on the value of our simulation design. Although simulation-based studies have obvious limitations 

                                                 
4 Table 1 is informative about the key aspects of our simulation design but does not provide the entire parameterization 
of the simulation for presentational reasons. Appendix G provides supplementary material that, when combined with 
the information in Table 1 and files available online from the authors, including our baseline simulation program, can be 
used to fully reconstruct the simulated data environment. 
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and no simulated data environment can hope to capture perfectly all aspects of a real data 

environment, the questions we explore can best be answered with a simulation study. The reason is 

that with any real dataset measurement error in the non-test-score control variables is unknown. Our 

control of the DGP ensures that measurement error in our data is properly understood, which is 

critical given our focus on modeling the achievement returns to family income. Our simulations also 

facilitate a straightforward expansion of results to consider hypothetical changes to key evaluation 

conditions via adjustments to the DGP. 
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Table 1. Parameter and Coefficient Targets and Values for the Data Generating Process (DGP). 
 Equation Description Targets Final Baseline Values Sources 
    One-Step Two-Step  

1λ   (8), DGP Teacher effect decay (one-year lag) 0.2-0.5 0.35 0.35 Lockwood et al. (2007), 
Kane and Staiger (2008), 
Jacob et al. (2010), 
Chetty et al. (2014b) 

Qσ   (9), DGP SD of time-invariant TQ distribution 0.15 0.15 0.15 Winters and Cowen (2013), 
Koedel et al. (2015) 

Vσ   (9), DGP SD of time-varying TQ distribution 0.125 0.125 0.125 Winters and Cowen (2013), 
Koedel et al. (2015) 

1β   (11), REG VAM lagged exam score coefficient 0.7-0.8 0.77 0.78 Koedel et al. (2015) 

2
Fβ   (11), REG VAM FRM indicator coefficient (-0.1)-(-0.15) -0.15 -0.14 Ehlert et al. (2016) 

2
Fβ   (11), REG VAM classroom agg FRM coefficient 0.1  

(one-step) 
-0.2  

(two-step) 

-0.09 -0.30 

 
Ehlert et al. (2016) 

2
Iβ  (12), REG VAM true-income coefficient 0.04-0.07 0.07 0.07 Chetty et al. (2014a) & personal 

correspondence 

2
Iβ  (12), REG VAM true aggregate income coefficient 0.02 0.03 0.02 Chetty et al. (2014a) & personal 

correspondence 
θρ   - Year-to-year teacher effect correlation 0.4-0.6 0.53 0.50 McCaffrey, Sass, Lockwood, & Mihaly 

(2009), 
Koedel et al. (2015) 

FPF   - FRM Indicator False Positive Rate 10%-50% 20% 20% USDA (2007), 
Bass (2010), 
Harwell and LeBeau (2010), 
Hoffman (2012) 

Notes: In the Equation column, DGP indicates a parameter from the data generating process, and REG indicates a targeted coefficient from VAM regressions. The 
values in the Targets column are from the listed sources, while the Final Baseline Values columns report the simulation parameters or output values, listed separately for 

the one-step and two-step VAMs. 2
Fβ  and 2

Iβ  are taken from versions of equations (11) and (12), respectively, that are extended to include the classroom aggregate 

variables. The target values for 2
Iβ  and 2

Iβ  are taken from models where income is measured in $10,000 increments. θρ  is calculated using teacher effects estimated 
on non-overlapping student data (a second set of 60 students – three cohorts of 20 students each – is generated for each teacher to facilitate the comparison). This 
table provides most of the information needed to fully parameterize our simulations; the rest is available in Appendix G and in the baseline simulation program 
available online from the authors.
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3.2 Generating Student Test Scores 

We specify the DGP for a student test score at time t as a function of fixed student ability, 

past and present teacher quality, test measurement error, and a single control variable – household 

income of the student – that is included at both the individual level and aggregated to the classroom 

level to allow for classroom environment effects. Chetty et al. (2014), who gained access to income 

data from the Internal Revenue Service (IRS), provide evidence on the relationship between family 

income and achievement growth within the value-added framework. Using the IRS data, they estimate 

that a $10,000 increase in parental income is conditionally associated with a 0.065 standard deviation 

increase in the grade-8 test score for individual students (averaged across math and reading; see their 

online appendix D).5 Based on this estimate, our DGP allows student test scores to be affected linearly 

by income via a continuous underlying variable (we relax the linearity assumption in Appendix A; our 

results are substantively unaffected).  

A test score for student i in year t in our simulated data is constructed as follows: 

( 1) 1 2 3 1 2( )it i it i t it it ii tY I Iα θ θ λ λ λ ζ ζ−= + + + + + +       (9) 

Equation (9) is not a regression; it is a data generating process. In the equation, iα  is fixed student 

ability, itθ  is the quality of the teacher assigned to student i in time t, 1λ  is a decay parameter for the 

lagged teacher effect, iI  is a continuous measure of student i’s family income, which we treat as fixed 

for each student and draw from a distribution based on U.S. Census tracts, and itI  is the average 

income of students in student i’s  classroom in time t. The last two terms in parentheses, 1itζ  and 2 ,itζ  

are error terms that represent test measurement error and residual error in the model (i.e. deviations 

                                                 
5 We are not aware of other studies that provide similar estimates, which is likely due to a lack of income data beyond 
the FRM-eligibility proxy. However, even using the imperfect proxy, researchers have long identified important 
differences in educational outcomes by income. For example, using data from multiple districts across the United States, 
McCall, Houser, Cronin, Kingsbury, and Houser (2006) show that high-poverty students, as measured by FRM eligibility, 
have lower test scores and lower test-score growth relative to their low-poverty peers. 
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from the error-free scores for all other reasons, as discussed in Boyd et al., 2013), respectively. 2itζ  is 

specified to have homoscedastic variance, while 1itζ  is heteroskedastic, reflecting the fact that 

standardized tests are typically designed to be more precise measures of achievement in the middle of 

the ability distribution (Koedel, Leatherman, and Parsons, 2013; Lockwood and McCaffrey, 2014; 

Stacey, Guarino, and Wooldridge, 2016). Specifically, 1itζ  is distributed as 1(0, )itN σ , where 1itσ  is a 

u-shaped function of student i ’s error-free exam score ( 1) 1 2 3( )it i it ii t itIY Iα θ θ λ λ λ−= + + + + . The 

functional form used to determine 1itσ  is specified based on published conditional standard error of 

measurement (CSEM) data taken from the Missouri statewide exam.  

Parameterized following Winters and Cowen (2013), stθ  consists of time-invariant ( sQ ) and 

time-varying ( stV ) teacher quality components. For teacher s we parameterize quality in time t as: 

 st s stQ Vθ = + .           (10)  

Equation (10) is also a data generating process. The time-invariant and time-varying components for 

each teacher are parameterized independently and distributed normal with mean zero and standard 

deviations 0.15Qσ =  and 0.125Vσ = , respectively.  

The other DGP parameters are adjusted to achieve the target year-to-year correlation of 

estimated teacher effects within teachers, θρ , of 0.40-0.60 per Table 1. Although this year-to-year 

correlation target may initially seem high, it is appropriate given the models we estimate. Studies 

finding lower year-to-year correlations of value-added have typically employed specifications that 

include school and student fixed effects, which research demonstrates add noise but provide little 

benefit in terms of bias reduction (Koedel et al., 2015).  
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To arrive at parameter values for 2λ  and 3λ  in equation (9), we work backward from estimates 

in the literature. First, income is accounted for in standard models using the FRM indicator. Denoting 

the indicator as F, we apply the following data generating process to produce student FRM status: 

1  if  ( )
0  otherwise

i i i
i

I v f s
F

≤+
= 


         (11) 

where iI  indicates true income per above, iv  is measurement error in observed income, and ( )if s  is 

the income threshold for FRM eligibility, which is a function of student i’s family size, is .6 iv  is 

specified as normally distributed with mean zero and a variance set so that the errors in the resulting 

FRM eligibility indicator align with the targeted error rate shown in Table 1. Students are flagged as 

FRM eligible if their observed income (true income plus error) falls below the FRM threshold value. 

Estimates from variants of the following regression using real data on FRM status are widely 

available: 

( 1) 1 2 3
F

it i t it it itY Y F Xβ β β ε−= + + +         (12) 

After appropriately accounting for measurement error in F per the parameterization in Table 1, 

simultaneously parameterizing student ability, iα , and test-measurement error such that the 

relationship between contemporaneous and lagged test scores for individual students in our simulated 

data matches commonly-available estimates (also per Table 1), and allowing for teacher effects, we 

parameterize 2λ  in equation (9) using an iterative process so that we obtain a value of 2
Fβ  in our 

version of equation (12) that is consistent with the target value reported in Table 1.  

                                                 
6 is  is drawn from a school catchment area distribution constructed using Census tract data, similarly to family income. 
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Next, we estimate the following parallel version of the regression in equation (12) with the 

simulated data, where again the distribution of the continuous income variable is determined by US 

Census data:  

 ( 1) 1 2 3
I

it i t it it itY Y I Xβ β β ε−= + + + .       (13) 

Equation (13) replaces the noisy, coarse proxy for income in Equation (12) with the true income value. 

In addition to obtaining a proper estimate of 2
Fβ  in equation (12), our parameterization of 2λ  in 

equation (9) should also produce an estimate of 2
Iβ  from equation (13) in line with what is reported 

in Chetty et al. (2014), which it does. This suggests that the parameterizations of the DGP in equations 

(9), (10), and (11) are properly capturing the complex relationships between true income, measured 

FRM status, and test scores (including measurement error).  

The aggregated income parameter in equation (9), 3λ , is backward-induced using a similar 

strategy (the iterative process of obtaining values for 2λ  and 3λ  occurs simultaneously). In the end, 

Table 1 shows that our simulated dataset fits empirical regularities established by the value-added 

literature quite well. 

We use the above-described DGP to generate data for three cohorts of 12,000 students each. 

Six hundred teachers are also simulated, producing a student/teacher ratio of 20:1 per cohort. For 

simplicity we keep all teachers in the data in all three years so we observe three classrooms per teacher. 

Multiple student cohorts are required because without multiple cohorts, the schooling environment 

controls would not change within teachers and thus could not be included in the one-step VAM. 

3.3 Student and Teacher Sorting Scenarios 

The other important aspect of the simulation design is student and teacher sorting. While it is 

useful to assess model performance across a wide range of hypothetical sorting conditions, which is 
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straightforward, it is more difficult to construct a useful real-world scenario. However, doing so is 

necessary to be informative about the relevant tradeoffs across modeling structures.  

As noted previously, our approach to constructing a realistic sorting scenario of students to 

schools is to overlay Census tract maps with elementary-school catchment areas. We manually 

collected elementary school catchment area maps for eight school districts, consisting of 95 urban and 

suburban elementary schools, and overlaid them onto a Census tract map of Jackson County, Missouri. 

This allows us to identify the share of each tract that falls within each school catchment area. Census 

data (from the 2008-2012 American Community Survey) provide income distributions for each tract, 

from which the income variables for the DGP described by equation (9) can be drawn for individual 

students. This allows for realistic income distributions at each of the 95 schools. We then resample 

five schools at random to create a 100-school sample. Our process ignores private school and other 

non-resident-based enrollment, but corrections can be made to account for non-resident enrollment 

patterns by comparing the resulting FRM eligibility percentages for schools from the simulation to 

those published by the state education agency. Results from an analysis that accounts for non-resident 

student enrollment, shown in Appendix B, are very similar to what we report in the main text. 

We draw student ability from the same distribution for all students so that differences in 

average achievement across schools are driven by income differences. The 600 simulated teachers are 

assigned to the 100 simulated schools, with 6 teachers assigned to each school. We consider scenarios 

where teachers are randomly assigned to schools and scenarios where there is a positive correlation 

between teacher quality and school-average household income. The latter scenarios are particularly 

important for comparing the efficacy of the one- and two-step VAMs because the two-step VAM will 

misattribute teacher quality differences that align with student characteristics to the student 

characteristics.  



17 
 

A final issue is the sorting of students to teachers within schools. Research indicates that 

systematic within-school sorting is limited (e.g., Clotfelter, Ladd, and Vigdor, 2006; Isenberg et al., 

2016). Moreover, mechanically, differences in student-teacher sorting by income driven by cross- and 

within-school sorting are analytically indistinguishable in our simulations and VAMs.7 Therefore, for 

presentational convenience we initially focus on teacher sorting at the school level and randomly assign 

students to teachers within schools. We subsequently consider scenarios that allow for within-school 

sorting, including sorting along dimensions other than income.  

3.4 Assessing VAM Performance  

We evaluate the accuracy of estimated value-added using two summary measures: (a) the 

correlation with true values and (b) the mean squared error (MSE). In addition, we also consider 

whether teachers serving particular types of students (e.g., disproportionately low-income) are 

systematically affected by the use of alternative modeling structures. This gets at a key policy question 

regarding model choice: which types of teachers are more affected, and in which direction, when 

inaccuracies occur?  

4. Results 

4.1 Primary Results 

 Table 2 presents results from our baseline simulations. Teachers are randomly assigned to 

schools and students are assigned to schools by income based on the Census-tract mapping. Student 

assignments dictate the degree of within- versus between-school (and thus teacher) variance in income. 

Each simulation is conducted 250 times, and we report the mean values over the 250 replications.8 

We apply post-estimation shrinkage to all estimates following the procedure in Koedel et al. (2015). 

                                                 
7 This would not be the case if our VAMs included school fixed effects. However, it is the norm in the modern value-
added literature to omit school fixed effects (Koedel et al., 2015). 
8 The replication value of 250 was chosen empirically based on the convergence of model results. 
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Table 2. Accuracy of the One-Step and Two-Step Value-Added Estimates Compared to True Teacher 
Quality Values. Baseline Simulation Conditions. 250 Replications.  
 True Income FRM Proxy 
 1-Step 2-Step 1-Step 2-Step 
Correlation with True Teacher Quality (Rho) 0.7000 0.7066 0.6609 0.6795 
Mean Squared Error (MSE) 0.0176 0.0169 0.0208 0.0186 

Notes: See Table 1 for the baseline simulation values. 
 

Row (1) of the table shows correlations between the estimated teacher effects and true values 

( )sQ , and row (2) shows the MSE. In the first set of columns, we use the continuous income variable 

directly in the regression without measurement error. The models using true income give a baseline 

comparison, but they cannot be feasibly estimated in most applications due to the lack of availability 

of household income data. The second set of columns shows results from the more policy-relevant 

case where FRM eligibility is used as a noisy proxy, with the baseline error rate from Table 1.  

Unsurprisingly, estimated teacher effects from models that use the continuous, perfectly-

measured income variable are more accurate than estimates from models that use the FRM indicator. 

The models perform similarly when the direct income variable is used, but the two-step VAM 

performs better with the FRM proxy. The superior performance of the two-step VAM when we use 

the FRM proxy is in line with expectations for two reasons. First, the one-step model suffers from 

amplified attenuation bias. Second, the random assignment of teachers to schools obviates the key 

limitation of the two-step model – specifically, it will not overcorrect in the first step because there is 

no systematic relationship between teacher quality and student characteristics.  

Table 3 compares our baseline results (with the 20% FRM error rate per Table 1) to 

simulations where the FRM misclassification rate is parameterized to 0%, 10%, 30%, and 40%, 

respectively. For ease of presentation, Table 3 and all subsequent tables follow the same general 

structure of Table 2 in terms of reporting rho (the correlation between estimated and true teacher 

quality) and the MSE. Not surprisingly, model performance weakens as the FRM error rate increases. 



19 
 

The reduction in performance is larger for the one-step VAM, which is consistent with the preceding 

discussion, although the effect in both models is modest. For example, moving from a 20% to 40% 

misclassification rate reduces the correlation between estimated teacher quality and true values by 

0.0200 and 0.0115 for the one- and two-step VAMs, respectively. 

Lowering the FRM misclassification rate also provides insight into model performance that is 

increasingly relevant given the search for better measures of student disadvantage (Michelmore and 

Dynarski, 2017). Even with no misclassification, forcing the poverty measure to be binary when the 

poverty effect is not binary weakens model performance. This can be seen by comparing the results 

in the second set of columns in Table 3 to the results in Table 2 where we include the accurate, 

continuous measure of student income in the model. Hence, even as better measures of student 

disadvantage are developed, our results suggest that the one-step model will still suffer from amplified 

attenuation bias if the typical binary-measurement approach is retained for income status.9 

Table 3. Accuracy of the One-Step and Two-Step Value-Added Estimates Compared to True 
Teacher Quality Values. Various FRM Misclassification Rates. 250 Replications. 
 Baseline 

(20% Error) 0% Error 10% Error 30% Error 40% Error 

 1-Step 2-Step 1-Step 2-Step 1-Step 2-Step 1-Step 2-Step 1-Step 2-Step 
Rho 0.6609 0.6795 0.6753 0.6807 0.6712 0.6804 0.6500 0.6757 0.6409 0.6680 
MSE 0.0208 0.0186 0.0192 0.0186 0.0197 0.0186 0.0220 0.0189 0.0231 0.0196 

Notes: All other parameters aside from the FRM error rate are set to the baseline values reported in Table 1. As in Table 
2, Rho indicates the correlation between teachers’ value-added estimates and true quality, and MSE is the mean squared 
error. 

 

Next we investigate the sensitivity of our findings to changes in student-teacher sorting. Table 

4 shows results that allow for a positive correlation between teacher quality and student income – i.e., 

positive student-teacher sorting – from models that use the noisy FRM indicator with the baseline 

error rate as reported in Table 1. We consider scenarios where the correlation between teacher quality 

and true student income is 0.1, 0.2, 0.3, and 0.6. To obtain these correlations in our simulation 

                                                 
9 Use of a categorical variable, as in Michelmore and Dynarski (2017), would reduce but not eliminate this issue. 
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framework, pairs of teachers are randomly selected and their classrooms swapped, with the switch 

maintained if it moves the correlation in the desired direction and reversed otherwise. This process 

continues until the specified target correlation is met.  

We can express the correlations between teacher quality and student income in terms of the 

estimated gaps they create in teacher quality across students who differ by (noisy) FRM status. This is 

useful for benchmarking because such gaps have been reported many times in the literature using real 

data. For example, Isenberg et al. (2013) show that on average in 29 school districts, the gap in teacher 

value-added estimated from a one-step VAM between FRM and non-FRM students is 0.02-0.03 

student standard deviations. In a follow-up study, Isenberg et al. (2016) find a smaller gap of roughly 

0.005 student standard deviations.10 Sass et. al (2012) also use a one-step VAM and find gaps in teacher 

quality by student FRM eligibility of 0.01 to 0.03 student standard deviations in Florida and North 

Carolina.11 Goldhaber, Quince, and Theobald (2018), again using a one-step VAM, find gaps in teacher 

quality between FRM and non-FRM students in North Carolina and Washington on the order of 0.02-

0.03 student standard deviations.  

Although our analysis suggests that gaps estimated using a one-step VAM will be biased, they 

are still useful for calibration. In our simulations, correlations between teacher quality and continuous 

student income of 0.10, 0.20, 0.30, and 0.60, as reported in Table 4, correspond to gaps in teacher 

quality by (noisy) FRM status of 0.035, 0.038, 0.040, and 0.049, respectively, when teacher quality is 

estimated using a one-step VAM to match the above studies. Thus, benchmarking the gaps estimated 

in our simulations against available research (as discussed in the previous paragraph) suggests that the 

                                                 
10 An explanation for the differing results is that Isenberg et al. (2016) include classroom characteristics in their models 
while Isenberg et al. (2013) do not. A reason given by the authors is that additional years of data were available for the 
later study, providing more within-teacher variation to leverage in their one-step VAM (Isenberg et al., 2016). 
11 These authors estimate many models. The range of values reported in the text is for estimates from models comparing 
students by individual FRM status with partial persistence, student covariates, and un-shrunken value-added. Many of 
the other models considered by these authors imply even smaller, and sometimes negative, gaps by student FRM status. 
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scenarios where the correlation between teacher quality and income is in the range of 0.00-0.10 most 

closely reflect real-world conditions. 

Table 4. Accuracy of the One-Step and Two-Step Value-Added Estimates Compared to True Teacher 
Quality Values. Various Teacher Sorting Scenarios. 250 Replications. 
 Baseline 

(0 Corr) 0.1 Corr 0.2 Corr 0.3 Corr 0.6 Corr 

 1-Step 2-Step 1-Step 2-Step 1-Step 2-Step 1-Step 2-Step 1-Step 2-Step 
Rho 0.6609 0.6795 0.6683 0.6825 0.6780 0.6835 0.6851 0.6825 0.7054 0.6609 
MSE 0.0208 0.0186 0.0215 0.0185 0.0201 0.0183 0.0198 0.0183 0.0189 0.0189 

Notes: The correlation values represent the correlation between true teacher quality and student income, both aggregated 
at the school level. All other parameters are set to the baseline values reported in Table 1. As in Table 2, Rho indicates the 
correlation between teachers’ value-added estimates and true quality, and MSE is the mean squared error. 
 

With this context we turn to the results. First, somewhat surprisingly, note that there is a 

modest improvement in the accuracy of value-added estimates from both models when we introduce 

limited sorting (up to a 0.20 income-quality correlation). Moreover, there is a consistent improvement 

as the correlation rises through 0.60 for the one-step VAM. The improvement in both models, and 

particularly the two-step model, when sorting increases may initially seem counterintuitive. However, 

there is a straightforward explanation: the bias introduced into the models in the positive student-

teacher sorting scenarios is positively correlated with true teacher quality and offsets other biases in 

the models. Put differently, if the true state of the world is that higher quality teachers are sorted to 

higher income schools, then models that are biased in favor of teachers in high income schools, such 

as the one-step model, are essentially adjusting the teacher effect estimates toward the truth, albeit in 

an unintentional and ad hoc manner. 

To unpack this explanation further, start with the one-step VAM and the initial condition 

where the correlation is 0.00 (random teacher assignments). Because the coefficients on individual and 

aggregate FRM status from the achievement regression suffer from attenuation bias, teachers who by 

happenstance receive more high-income students appear to be more effective. This is due to the 

incomplete accounting for student-income effects in the model. However, this bias is uncorrelated 



22 
 

with true teacher quality because teachers are randomly distributed. Teachers who by happenstance 

get a good income draw are rewarded by the bias, and those who get a bad income draw are harmed, 

but these gains and losses are unrelated to true quality values.  

Next consider increasing the correlation between teacher quality and true student income via 

the sorting process, as shown in the later columns of Table 4. Attenuation bias in the FRM controls 

remains an issue – that is, because the attenuated coefficients do not fully capture the value of income, 

the bias continues to favor teachers of high income students. But now, with positive student-teacher 

sorting, teachers who have more high-income students are truly better on average. Thus, the sorting 

bias directionally aligns with the truth. As positive sorting increases, the bias increasingly goes in the 

same direction as the truth because the best teachers are more and more likely to have the highest 

income students. On net, the result is that the accuracy of model predictions improves with positive 

student-teacher sorting. Of course this only works up to a point, but over the range of sorting 

conditions we consider in Table 4 the net effect of increased sorting bias is improved model 

performance, at least for the one-step VAM. 

As a verification of this mechanism, in Appendix C we show analogous results under 

conditions with negative sorting – i.e., where higher-quality teachers are on average assigned to lower 

income students. In this scenario the best teachers now have students who based on their income 

should perform worse, but the model does not fully account for this, so the bias in their value-added 

estimates is negative. The converse is true for low-value-added teachers. As predicted, Appendix C 

shows that the performance of the one-step VAM deteriorates rapidly as negative sorting becomes 

more severe. The rationale is the opposite of what we see in Table 4. The two-step VAM exhibits a 

similar but more muted pattern in Appendix C, which is consistent with the above-described 

differences in how the models work. 
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Turning to the results for the two-step VAM in Table 4, attenuation bias is still an issue, but 

much less so because the model leverages between-teacher variance to help identify the parameters in 

equation (6). Therefore, the “correlated bias” described in the previous paragraph improves accuracy 

by less as the correlation increases because the initial effect of attenuation bias is smaller. At the same 

time, overcorrection bias as described in Section 2.2 is increasingly an issue as the correlation between 

teacher quality and student income rises. This is because differences in teacher quality by income load 

onto the first-stage parameter estimates in equation (6). At low levels of sorting, increases in positive 

student-teacher sorting modestly improve accuracy on net, like with the one-step VAM. However, 

when the correlation reaches the 0.30 level, overcorrection bias becomes more important and the net 

effect changes direction. This is a manifestation of the model tradeoffs discussed in Section 2.  

In summary, the results in Table 4 indicate that over the range of realistic sorting scenarios, 

the two-step VAM marginally outperforms the one-step VAM in terms of accuracy, suggesting that 

the attenuation bias issue dominates the overcorrection bias issue. With high levels of sorting, the one-

step VAM exhibits superior performance because overcorrection bias in the two-step VAM becomes 

more problematic.  

These results may initially seem at odds with findings from Guarino, Reckase, and Wooldridge 

(2015) and Guarino et al. (2015), who argue that the one-step VAM produces the most accurate 

estimates. While there are design differences between these studies and ours that make direct 

comparisons difficult, we note that they only find that the one-step VAM outperforms the two-step 

VAM with non-random student-teacher sorting. Moreover, although neither of these papers provides 

clear metrics documenting the degree of student-teacher sorting in the simulations, the descriptions 

of the student grouping and teacher assignment procedures found in both papers suggest substantial 

sorting. This makes their findings most comparable to our high correlation case (0.6), in which our 
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results are directionally similar. However, we show that the two-step VAM outperforms the one-step 

VAM in more moderate sorting scenarios that research suggests are more realistic.  

It is also noteworthy that Guarino, Reckase, and Wooldridge (2015) and Guarino et al. (2015) 

use a DGP where student test scores depend only on time-invariant student ability, teacher quality, 

and a random error term. Their DGP does not incorporate economic disadvantage at the individual 

or classroom levels. By construction, their setup prevents attenuation bias owing to noisy control 

variables from affecting model performance, while the pattern of results we show is influenced 

significantly by the attenuation bias issue. 

Next we allow for within-school sorting of students to teachers. The implications of within-

school sorting will be similar to the implications of cross-school sorting because the same underlying 

factors are relevant. A conceptual difference, however, is that it is more plausible that sorting occurs 

along dimensions other than income within schools. Thus we also consider within-school sorting 

along the dimensions of fixed ability and lagged test scores (where the latter is inclusive of error). 

The results are reported in Table 5. We start with selected scenarios from Table 4 where the 

cross-school sorting conditions are different – specifically, we use the cases where school-level teacher 

quality and student income are correlated at the levels of 0.00, 0.20, and 0.60. Results from the main 

settings without within-school sorting, which match what we show in Table 4, are reported in the first 

set of columns of Table 5 for ease of comparison. On top of the baseline cross-school sorting 

conditions indicated by the rows, each column in the table is for a different within-school sorting 

condition. For example, in vertical-panel-2/horizontal-panel-2, we show results where sorting across 

schools generates a school-level correlation between teacher quality and student income of 0.20 and, 

on top of that, within-school sorting of students to teachers generates a 0.10 correlation between 

student income and teacher quality (measured at the teacher level within schools). We show results 

for within-school correlations of 0.10 between teacher quality and student income, ability, and lagged 
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test scores; we also show results from a stronger within-school sorting condition based on lagged test 

scores – a 0.20 correlation – given the attention that sorting on test scores has received in research 

(we are not aware of compelling empirical support for this focus in elementary schools, although 

within-school student sorting is generally a more significant concern in later grades).  

The results in Table 5 are broadly consistent with the patterns documented in Table 4. The 

general themes that the models perform similarly across estimation conditions and, as sorting becomes 

more severe, the one-step VAM performs relatively better, are apparent. 
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Table 5. Accuracy of the One-Step and Two-Step Value-Added Estimates Compared to True Teacher Quality Values. Various Within-
School Teacher Sorting Scenarios. 250 Replications. 
 Within-School  

Sorting Conditions 
Baseline 
(0 Corr) 

0.1 Corr 
(Income) 

0.1 Corr 
(Ability) 

0.1 Corr  
(Lagged Test) 

0.2 Corr  
(Lagged Test) 

   1-Step 2-Step 1-Step 2-Step 1-Step 2-Step 1-Step 2-Step 1-Step 2-Step 

Cross-
School 
Sorting 
Conditions 
(Table 4) 

Baseline  
(0 Corr) 

Rho 0.6609 0.6795 0.6655 0.6822 0.6643 0.6822 0.6620 0.6792 0.6631 0.6791 
MSE 0.0208 0.0186 0.0207 0.0186 0.0207 0.0185 0.0207 0.0185 0.0207 0.0185 

            

0.2 Corr Rho 0.6780 0.6835 0.6818 0.6847 0.6807 0.6858 0.6784 0.6820 0.6795 0.6814 
MSE 0.0201 0.0183 0.0201 0.0183 0.0201 0.0183 0.0201 0.0183 0.0201 0.0183 

            

0.6 Corr Rho 0.7054 0.6609 0.7084 0.6595 0.7075 0.6628 0.7053 0.6575 0.7063 0.6555 
MSE 0.0189 0.0189 0.0189 0.0191 0.0189 0.0190 0.0189 0.0191 0.0189 0.0191 

Notes: The correlation values in each row represent the correlation between true teacher quality and student income, both aggregated at the school level, as reported in 
Table 4. The correlation values in each column represent additional within-school sorting along the stated dimension (student household income, student fixed ability, 
and lagged test scores) built on top of the relevant cross-school sorting scenario. All other parameters are set to the baseline values reported in Table 1. As in Table 2, 
Rho indicates the correlation between teachers’ value-added estimates and true quality, and MSE is the mean squared error.
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4.2 Extensions 

In this section we explore extensions that modify the DGP and estimation conditions and 

procedures. First, we consider the sensitivity of our findings to modifying the timespan of the data. In 

research it is not uncommon for studies to use more than three years of data to estimate teacher value-

added (e.g., Chetty, Friedman, and Rockoff, 2014; Sass et al., 2012). At the other end of the spectrum, 

in policy applications estimates of teacher value-added are often based on just one year.  

Table 6 shows results from extensions of the simulation that cover seven years of data for 

each teacher and just one year. Reducing the data to a single year mechanically prevents separate 

identification of the classroom aggregate coefficients and teacher fixed effects in the one-step model, 

thus the classroom aggregates must be omitted.12 We also exclude classroom aggregates from two-

step VAM to allow for a straightforward comparison. A caveat to the analysis over the 7-year span is 

that the “fixed” component of teacher quality is likely to drift some over time (Chetty, Friedman, and 

Rockoff 2014), particularly for new teachers, which is not built into our DGP or models. Nonetheless, 

the results in Table 6 permit general insight into comparative model performance as the number of 

years available for estimation changes. 

Data availability impacts model performance in the expected ways. Specifically, performance 

for both the one- and two-step VAMs improves as we move from one to three to seven years of data. 

The relative performance of the models is largely unchanged across the scenarios, with the two-step 

model continuing to outperform the one-step model in the more realistic low- to moderate-sorting 

cases and the one-step model outperforming the two-step model in the high-sorting cases.  

                                                 
12 Of course, the same mechanical identification problem applies to the two-step model, but the two-step model makes 
no attempt at separate identification via the partialing out of all covariates in the first stage. 
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Table 6. Accuracy of the One-Step and Two-Step Value-Added Estimates Compared to True 
Teacher Quality Values. Various Number of Years of Student Outcome Data used in Model 
Estimation. 250 Replications. 
 Number of Years of 

Student Outcome Data 
used in the Model 

Baseline 
(3 years) 7 Years 1 Year  

(No Classroom Aggs) 

   1-Step 2-Step 1-Step 2-Step 1-Step 2-Step 

Cross-
School 
Sorting 
Conditions 
(Table 4) 

Baseline  
(0 Corr) 

Rho 0.6609 0.6795 0.6841 0.7053 0.5876 0.5969 
MSE 0.0208 0.0186 0.0204 0.0180 0.0252 0.0215 

        

0.2 Corr Rho 0.6780 0.6835 0.6990 0.7075 0.6070 0.6123 
MSE 0.0201 0.0183 0.0198 0.0178 0.0246 0.0209 

        

0.6 Corr Rho 0.7054 0.6609 0.7272 0.6866 0.6442 0.6340 
MSE 0.0189 0.0189 0.0185 0.0184 0.0232 0.0197 

Notes: The correlation values in each horizontal panel represent the correlation between true teacher quality and student 
income, both aggregated at the school level, as reported in Table 4. Each pair of columns represents a model estimated 
using the given number of years of outcome data. All other parameters are set to the baseline values reported in Table 1. 
As in Table 2, Rho indicates the correlation between teachers’ value-added estimates and true quality, and MSE is the 
mean squared error. 
 
 

Next, we turn to the issue of test measurement error. The conceptual issues raised thus far 

share similarities with issues raised in the literature on test measurement error. Specifically, like 

measurement error in student income, measurement error in lagged test scores can also adversely 

affect estimates of teacher value-added by reducing the efficacy of the lagged-achievement control. 

Unlike measurement error in income, information about test measurement error is often available 

from test publishers, at least for the portion attributable to the test itself. In our framework this portion 

of the error is denoted by 1itζ . Most research studies do not make adjustments to address test 

measurement error, but adjustments are often made in policy applications of VAMs (e.g., Isenberg 

and Walsh, 2014). In Table 7 we replicate selected results from above after implementing a feasible 

method of moments (FMOM) correction for test measurement error developed by Lockwood and 

McCaffrey (2014).13 

                                                 
13 We use the eivtools R-package developed by J.R. Lockwood to implement the procedure. The “feasible” descriptor 
refers to the fact that test measurement error is not known in practice and must be estimated; thus feasible corrections 
are only possible based on estimates of test measurement error. Lockwood and McCaffrey (2014) develop a procedure 
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Table 7. Accuracy of the One-Step and Two-Step Value-Added Estimates Compared to True 
Teacher Quality Values. Feasible Method of Moments Correction. 250 Replications. 
  Baseline 

(No TME 
Correction) 

FMOM 

   1-Step 2-Step 1-Step 2-Step 

Cross-
School 
Sorting 
Conditions 
(Table 4) 

Baseline  
(0 Corr) 

Rho 0.6609 0.6795 0.6675 0.6679 
MSE 0.0208 0.0186 0.0186 0.0186 

      

0.2 Corr Rho 0.6780 0.6835 0.6680 0.6659 
MSE 0.0201 0.0183 0.0185 0.0186 

      

0.6 Corr Rho 0.7054 0.6609 0.6478 0.6269 
MSE 0.0189 0.0189 0.0190 0.0199 

Notes: The correlation values in each horizontal panel represent the correlation between true teacher quality and student 
income, both aggregated at the school level, as reported in Table 4. Values in the FMOM columns are from models that 
apply the Lockwood and McCaffrey (2014) feasible method of moments correction to account for test measurement error. 
All other parameters are set to the baseline values reported in Table 1. As in Table 2, Rho indicates the correlation between 
teachers’ value-added estimates and true quality, and MSE is the mean squared error. 

 

The results from applying the FMOM correction are mixed. First we explain the findings for 

the one-step VAM, which are comparable to findings in Lockwood and McCaffrey (2014). In the no-

sorting and low-sorting scenarios (again, the ones best supported by research), the FMOM correction 

improves accuracy as measured by the MSE, while the correlation slightly improves in the no-sorting 

scenario and slightly declines in the low-sorting scenario. The improvement in MSE matches results 

from Lockwood and McCaffrey (2014). And while these authors do not report correlations between 

estimates and true values, the lower correlation we report in the low-sorting scenario is predicted by 

their work. Specifically, the correlations are a function of both the MSE and the variance of value-

added. Lockwood and McCaffrey (2014) show that the FMOM procedure reduces the variance of 

value-added estimates, which all else equal puts downward pressure on the correlation. This explains 

how the correlation and MSE can decline simultaneously. 

The FMOM correction weakens the performance of the one-step VAM in the high-sorting 

                                                 
for estimating test measurement error and show that the feasible approach performs very similarly to the approach based 
on known test measurement error in simulations. 
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scenario as measured by both the correlation with true values and the MSE. This result is part of a 

broad pattern in Table 7 for the one-step VAM in which as positive student-teacher sorting increases, 

the FMOM procedure becomes less helpful. Similarly to the results presented in Table 4, the reason 

is that the procedure is removing bias in teacher value-added by dis-attenuating the lagged achievement 

control; but as student-teacher sorting becomes more positive, the bias that is removed is increasingly 

aligned with true values and working to offset other biases in the model. 

Like with Table 4, Appendix C presents parallel FMOM results with negative student-teacher 

sorting to empirically support the correlated-bias explanation. The models in Appendix C introduce 

the same level of sorting, but now the bias generated by the sorting is negatively correlated with 

teachers’ true values due the reversal of the sorting process. Thus, in Appendix C, improvements to 

the model that reduce the influence of sorting bias should lead to more accurate estimates of teacher 

effects, which is precisely what we find in all scenarios when we apply the FMOM correction. We 

conclude that the correction is working properly to reduce bias by better capturing the lagged-

achievement effect, but depending on the direction of bias and degree of sorting, this can lead to more 

or less accurate estimates of value-added.  

We also briefly touch on estimates from the two-step VAM, which is not studied by Lockwood 

and McCaffrey (2014). There is no evidence of a benefit from the FMOM procedure for the two-step 

VAM and if anything, it modestly reduces estimation accuracy. Two factors contribute to this result: 

(1) again, the loss of correlated bias worsens model performance, like with the one-step VAM, and (2) 

less benefit accrues from the FMOM procedure in the two-step VAM because the consequences of 

test measurement error are less severe to begin with. Notably, the two-step VAM is better positioned 

to leverage information about lagged aggregate test performance to reduce the effect of test 

measurement error even in the absence of the FMOM correction, as discussed by Lockwood and 

McCaffrey (2014). We briefly explore this explanation in Appendix E by showing that the FMOM 
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correction has a more positive influence on model performance when the model does not include 

classroom aggregates, including lagged aggregate achievement, as conditioning variables. 

Finally, in Table 8 we vary the degree of student sorting to schools by true income. This 

investigation is distinct from the investigation of sorting in Tables 4 and 5 (and extended in Tables 6 

and 7). Whereas in Tables 4 and 5 we allow for positive student-teacher sorting, here we maintain the 

baseline condition that teacher quality and student income are uncorrelated, but we sort students to 

schools by income to different degrees. In the real world, these types of changes would reflect 

differences in residential segregation by income. This dimension of model sensitivity is important 

because more sorting along the income dimension results in less within-teacher variance to be 

leveraged for identification. Following on the theoretical discussion from Section 2, we hypothesize 

that the gap in performance between the one- and two-step VAMs should widen, increasingly favoring 

the two-step VAM, as the within-school (and thus within-teacher) variance share of student income 

declines. 

The column headers in Table 8 report the within- school variance share of the income variable; 

i.e., 73.4 percent of the variance in income occurs within schools in the baseline sorting condition. We 

consider three alternative scenarios. The two extreme cases are random assignment and perfect 

sorting. We also consider an intermediate case where the within-school variance is greatly reduced but 

remains non-negligible, at roughly 25 percent.14 

  

                                                 
14 Converting student income to the noisy FRM proxy per above, we can compare the within and between school 
variance shares in student FRM status in the simulation to observed values in real data. We obtained data from an 
anonymous set of school districts in a different Midwestern metropolitan area to perform the comparison and find that 
our baseline simulation scenario is similar (especially when we correct for non-traditional enrollment as in Appendix B) 
but exhibits somewhat more within-school variance in student FRM status than in the real data. 



32 
 

Table 8. Accuracy of the One-Step and Two-Step Value-Added Estimates Compared to True 
Teacher Quality Values. Various Student Sorting Scenarios that Modify the Within-School Variance 
Shares of Student Income. 250 Replications. 
 Baseline 

(within var=73.4%) 
 Random 

(within var=99.8%) 
Intermediate 

(within var =25.3%) 
Perfect 

(within var =0.1%) 
 1-Step 2-Step  1-Step 2-Step 1-Step 2-Step 1-Step 2-Step 
Rho 0.6609 0.6795  0.6839 0.6837 0.4912 0.6323 0.3281 0.5869 
MSE 0.0208 0.0186  0.0180 0.0180 0.0583 0.0250 0.1734 0.0332 

Notes: The within variance share is the within-school variance share of individual student income. Teachers are assigned 
to schools at random in all columns. All other parameters are set to the baseline values from Table 1. As in Table 2, Rho 
indicates the correlation between teachers’ value-added estimates and true quality, and MSE is the mean squared error. 
 

With random sorting of students to schools by income, Table 8 shows that estimation accuracy 

improves in both VAMs, and they perform nearly identically. This is as expected because random 

sorting provides adequate within-teacher variation to be leveraged by the one-step VAM. Also as 

expected, the two-step VAM exhibits relative performance gains as we shrink the within-school 

variance of income. When students are perfectly sorted to schools by income, the performance of 

both models declines because there is less variation in income, within and between teachers, to be 

exploited. Although this is not a plausible real-world scenario, it is instructive about the mechanisms 

driving our findings. The large relative degradation in performance of the one-step VAM is because 

students will either all be FRM-eligible or ineligible at most schools, based on the true income measure. 

In fact, within-teacher identifying variation that is not attributable to measurement error is coming 

entirely from a handful of schools where the average income in the school falls near the threshold 

income level for FRM eligibility; i.e., the small number of schools that have both FRM eligible and 

ineligible students.15 On the whole, the strict sorting of students by true income increases the share of 

the within-teacher variance in measured FRM status attributable to measurement error.  

An issue related to the results in Table 8 is student and teacher mobility. Our simulations do 

not permit the underlying distributions of income from the catchment areas to change over time, nor 

                                                 
15 If FRM eligibility were solely a function of household income the variation would always be limited to a single school 
that falls right at the threshold value. The fact that the FRM eligibility threshold varies by family size allows for some 
additional within-school variability. 
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do they allow for teachers to change schools. Both teacher mobility and changing neighborhood 

demographics – e.g., neighborhood gentrification – would create additional within-teacher variance in 

student income over time. The clear inference from Table 8 is that the relative performance of the 

one-step VAM would improve. 

4.3 Systematic Bias 

 Thus far we have shown that the two-step VAM outperforms the one-step VAM in terms of 

overall accuracy in the most plausible sorting and data-quality conditions, while under extreme 

conditions the one-step VAM can perform better. That said, the differences in overall accuracy are 

typically small and if this were the only consideration in selecting a model, a reasonable conclusion is 

that both models perform similarly. However, average performance metrics like those presented in 

Tables 2-8 can mask heterogeneity across models in how errors are distributed. For example, in the 

context of use in accountability systems it is important to understand whether teachers serving 

students from different backgrounds are positively or negatively impacted by model choice. Even with 

small differences between models on average, meaningful differences for different types of teachers 

could exist. 

 We explore this issue in Figure 1, where we show the average household income of students 

(in dollars) taught by teachers who differ by quality quintile. Teachers are placed into quality quintiles 

using three different metrics: the truth (i.e., sQ  as parameterized in the known DGP) and estimates 

from the one- and two-step VAMs. Lower-numbered quintiles indicate a lower quality ranking. Each 

chart in Figure 1 presents results from a different student-teacher sorting condition – we show results 

for correlations between teacher quality and student income of 0.00, 0.20, and 0.60. 
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Figure 1. Average Classroom Income by Teacher Quality Quintile as Measured by True Teacher 
Quality and Estimates Produced by the One-Step and Two-Step VAMs. 250 Replications. 

Correlation value = 0 Correlation value = 0.2 

  

Correlation value = 0.6  

 

 

Notes: The correlation values represent the correlation between true teacher quality and average student income (i.e., the 
degree of parameterized student-teacher sorting by income). The vertical axis is measured in dollars of income and the 
horizontal axis divides teachers by quintile ranking. All parameters other than the correlations are set to the baseline 
values reported in Table 1. 
 
 

The first chart in Figure 1 is from the random assignment condition where there is no 

correlation between teacher quality and student income. Correspondingly, the first bar in each quintile-

group (blue), which shows average student income based on teachers’ true quintile rankings, reveals 

no differences in average income across quintiles. The second and third bars reveal that estimates 

from both VAMs favor teachers who happen to be assigned higher-income students, a relationship 

that is stronger for the one-step VAM.  
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These results are as expected for the one-step VAM because amplified attenuation bias leads 

the model to under-correct for the control variables, falsely attributing a good or bad income draw to 

the teacher. The practical implication is that even without systematic sorting, teachers who are lucky 

and get more higher-income students are rewarded. The fact that the two-step VAM also favors 

teachers of higher-income students is perhaps surprising given that it is purposefully structured to 

create “proportional” teacher rankings. What drives the result in the two-step VAM is again 

attenuation bias from measurement error. Even though this bias is reduced in the two-step VAM, it 

is not entirely mitigated. 

 The other charts show results where the correlation between teacher quality and student 

income increases to 0.20 and 0.60. Recall from Table 4 that in terms of overall accuracy, the two-step 

VAM is marginally more accurate under the first condition and the one-step VAM is more accurate 

under the second. For the 0.20-correlation case, the two-step VAM, despite overall accuracy levels 

that are very similar to the one-step VAM in this condition (per Table 4), produces a teacher quality 

distribution by average income that is much closer to the true distribution because attenuation bias 

and overcorrection bias are working in opposite directions and largely cancel each other out. When 

we further strengthen student-teacher sorting in the last chart, the one-step VAM continues to favor 

teachers of high-income students relative to the truth, but the one-step VAM is more accurate in its 

classifications per the preceding analysis. In contrast, the two-step model’s overcorrection bias now 

overpowers the influence of attenuation bias, and on net the two-step model favors teachers serving 

low-income students relative to the rankings based on true quality. 

The results in Figure 1 may initially seem to contradict recent research showing that value-

added estimates from one- and two-step VAMs are forecast unbiased on average (Bacher-Hicks et al., 
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2014; Chetty et al., 2014; Kane et al., 2013).16 However, there need not be a contradiction for two 

reasons. First, the income gaps in the top and bottom quintiles, while clearly visible, are not 

overwhelming, especially when they are mapped to student achievement. Second, what bias is present 

is concentrated in the tails of the distribution and limited in the middle. Thus, it may not show up 

strongly in summary measures of bias across the entire teacher distribution. Intuitively, Figure 1 shows 

that when there is bias from attenuated control-variable coefficients, the effect is more pronounced 

for teachers of classrooms where student characteristics differ most from the average classroom. 

To help contextualize these results we develop a procedure within our simulation framework 

analogous to the one used by Chetty et al. (2014) to estimate average forecasting bias in value-added 

estimates. We relegate the details of the procedure to Appendix D, but conceptually the idea is to 

estimate how much of the variance in student test scores that cannot be explained by observable 

measures (e.g., student FRM status) can be explained by unobservable measures that we know given 

our simulation design (e.g., student family income). In Chetty et al., (2014), the analogy to the family 

income information we have in our simulations is information from IRS tax data. 

Consistent with Chetty et al. (2014), we estimate small and statistically insignificant forecasting 

bias of value-added across the teacher distribution using both VAMs, on average. The bias is nominally 

larger in the one-step VAM, but in both VAMs the point estimate for the bias is below five percent. 

These results illustrate that a modest degree of bias in value-added estimates, concentrated among a 

faction of the sample, can go undetected in tests that focus on average bias across the entire 

distribution. This is hardly a newsworthy result in the abstract. However, while a small amount of bias 

may be ignorable if it is distributed evenly, if the bias is concentrated among certain teachers, as in 

Figure 1, it could be quite important, particularly in policy applications. 

                                                 
16 The Kane et al. (2013) study provides evidence that is less directly related to our application because it tests for bias 
from sorting within schools only. 
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It is also worth noting that the model comparisons in Figure 1 generally match findings 

obtained from real data. This is illustrated in Figure 2, where we use data from an anonymous set of 

school districts in a different Midwestern metropolitan area to perform a similar analysis. True student 

income and true teacher quality are not observed in the real data, so we report results in terms of the 

shares of students who are ineligible for FRM and estimates of teacher value-added from the one- and 

two-step VAMs. 

Figure 2. Average Share of Students Not Eligible for FRM by Teacher Quality Quintile, as Measured 
by Estimates from the One-Step and Two-Step VAMs Using Real Data.  

 
Notes: The vertical axis measures the FRM-ineligible share to align the figure directionally with its simulation-based analogs 
in Figure 1. The horizontal axis divides teachers by quintile ranking. This figure is produced using administrative data from 
an anonymous set of school districts in a different Midwestern metropolitan area. 

 

In summary, the one- and two-step VAMs perform similarly in terms of overall accuracy, and 

the bias present in estimates from each model is small on average across all teachers. However, a 

more-nuanced analysis reveals pockets of systematic bias that have different implications for which 

types of teachers are identified as the most and least effective in the different models. While the 

research literature has thus far devoted little direct attention to this issue, it is likely a key concern for 

policymakers and other stakeholders in consequential evaluation systems. It is beyond the scope of 

this article to delve into which types of errors are most acceptable, or even desirable, for public policy. 

We refer interested readers to Ehlert et al. (2016, 2014) for such a discussion.  
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5. Discussion and Conclusion 

 We use rich simulated data grounded in the value-added literature, and with real-world sorting 

conditions, to evaluate the performance of one- and two-step VAMs. We capture model performance 

by correlations of estimated teacher effects with true values and the MSE. These metrics speak to the 

accuracy of teacher classifications that would occur based on value-added rankings (see Appendix F).  

An issue that has been largely overlooked in the value-added literature to date is the presence 

of control variable coefficients that are attenuated by measurement error. Estimated teacher effects 

from the one-step VAM are particularly prone to the influence of bias from this type of attenuation 

because the model isolates within-teacher variation to identify the control-variable coefficients 

(Ashenfelter and Krueger, 1994; Griliches, 1979). The direct effect of income in our DGP, and our 

use of a noisy proxy for income in the models, allows us to study the practical importance of this issue 

within the larger context of model selection, which depends on several analytic tradeoffs. While 

theoretically the tradeoffs associated with the models are straightforward to understand, the theory is 

ambiguous about which modeling approach is most accurate empirically. 

We find that the two-step VAM produces estimates of teacher quality that are more accurate 

than estimates from the one-step VAM, albeit modestly, under the most likely conditions in teacher 

evaluation and research settings. When there is substantial student-teacher sorting the one-step VAM 

is more accurate, but available research suggests that such extreme sorting is unlikely, at least at the 

elementary level (Sass et al., 2012; Isenberg et al., 2013; Isenberg et al., 2016; Goldhaber, Quince and 

Theobald, 2018). In higher grades (i.e., in middle school and even more so in high school) student-

teacher sorting may be more of an issue due to increased student tracking, the implications of which 

merit attention in future research.17  

                                                 
17 The issue of how best to estimate value-added for high school teachers remains unresolved in the literature (Anderson 
and Harris, 2013; Jackson, 2014; Parsons et al., 2015). 



39 
 

We also find that at low to moderate levels of sorting, both models are modestly biased in 

favor of teachers in high-income schools. Although the bias is not large enough to show up in 

traditional tests of average bias across the full distribution, we show that such tests can miss pockets 

of systematic bias that disproportionately affect small groups of teachers. The tilt of the models in 

favor of teachers in high-income schools is the result of attenuation bias caused by the use of FRM-

eligibility as a noisy proxy for continuous student disadvantage. In short, attenuation bias leads the 

models to under-account for the effect of family income, and correspondingly, they misattribute 

income-driven differences in achievement to teachers. There is a conceptually parallel issue with 

respect to test measurement error (Lockwood and McCaffrey, 2014).  

The primary argument made by opponents of the two-step VAM is that it overcorrects for 

student disadvantage and may hide gaps in teacher quality across students who differ by 

socioeconomic status. A finding that may surprise some – although ex post it should not be surprising 

given the basic statistics of attenuation bias – is that even estimates from the two-step VAM are biased 

in favor of teachers of high-income students when sorting conditions are modest. Our results suggest 

that the intuitive concern about overcorrection bias in the two-step VAM only applies when there is 

a very high degree of student-teacher sorting, in which case overcorrection bias dominates attenuation 

bias caused by the noisy FRM proxy variable. 
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Appendix A 
Nonlinear Income Effects in the Data Generating Process 

 
Our primary DGP allows family income to affect test scores linearly and is parameterized 

using income effects estimated from a regression in which income enters linearly (per Chetty et al., 
2014). However, the true relationship between income and test scores may be nonlinear. A potential 
source of nonlinearity discussed by Ehlert et al. (2016) and Raudenbush and Willms (1995) is 
instructional practices that are correlated with schooling context (we avoid a lengthy discussion of this 
possibility here and instead refer interested readers to these papers). In this appendix we briefly 
consider the possibility of non-linear classroom environment effects by modifying the DGP as 
follows: 

( 1) 1 2it i it i t i itY Iα θ θ λ λ ζ−= + + + + +it 3I λ        (A.1) 

Equation (A.1) is analogous to equation (9), but we replace the linear classroom average income 
control with a set of controls that allow for nonlinear test-score returns. Specifically, we divide 
classrooms into three groups: (1) the bottom quintile, (2) the middle three quintiles, and (3) the top 
quintile, by average family income. We then include a vector of indicators for these three groups, 

multiplied by parameter vector 3λ , in the DGP in place of the linear measure. It is important to note 
that the non-linear income effects are still calibrated to the Chetty et al. (2014) results – i.e., the non-
linear DGP still produces coefficients in the linear regression model estimated by Chetty et al. that 
match what these authors report. The other aspects of the DGP are held fixed for this exercise.18 

Table A.1 shows results that correspond to what we show in Table 4, but with nonlinear 
income effects in the DGP. For brevity we only report results for selected student-teacher sorting 
scenarios – correlations between teacher quality and student income of 0.00, 0.20, and 0.60. The results 
in Table A.1 are substantively similar to what we report in Table 4. Thus, our findings are not 
qualitatively sensitive to allowing for non-linearity in how income affects student test scores. 
 
Appendix Table A.1. Accuracy of the One-Step and Two-Step Value-Added Estimates Compared 
to True Teacher Quality Values. Non-Linear Classroom Environment Data Generating Process 
Specification. Various Teacher Sorting Scenarios. 250 Replications.  
 Baseline 

(0 Corr) 0.2 Corr 0.6 Corr 

 1-Step 2-Step 1-Step 2-Step 1-Step 2-Step 
Rho 0.6631 0.6833 0.6808 0.6876 0.7094 0.6655 
MSE 0.0205 0.0182 0.0198 0.0179 0.0186 0.0185 

Notes: The correlation values represent the overall correlation between true teacher quality and student income, both 
aggregated at the school level. All other parameters aside from the teacher quality correlation and the specification of the 
classroom environment effects in the DGP are set to the baseline values reported in Table 1. As in Table 2, Rho 
indicates the correlation between teachers’ value-added estimates and true quality, and MSE is the mean squared error.  

                                                 
18 In equation A.1, the parameterized effects of being in a bottom- and top-quintile classroom, relative to the middle 
quintiles, are -0.08 and 0.10, respectively. We also consider other non-linear parameterizations (still subject to the 
constraint that they preserve the Chetty et al. (2014) result from the linear regression) and obtain similar results. 
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Appendix B 
Accounting for Non-Residential School Enrollment 

 
Our primary simulation design uses Census tract income data that includes all families with 

school-aged children to define the distributions from which family income is drawn for each school. 
However, in reality, some students – often higher income students living in urban areas – attend 
private or other schools where enrollment is not based on residence. Thus, the school-level income 
distributions are skewed relative to what is observed in public schools in the KCMO metropolitan 
area. With this in mind, we also perform simulations that use school-level income distributions 
adjusted for exit to non-residential schools. To make the adjustment, we simulate 100,000 students 
for each school, divide the simulated students into two groups based on FRM status, and then 
randomly select the appropriate number of students from each bin to produce a total of 360 students 
per school (120 students per school cohort) where the FRM percentage matches the actual school-
level FRM rates reported by the Missouri Department of Elementary and Secondary Education 
(DESE). For example, if a school’s reported FRM rate is 65% then 234 students (65%) are randomly 
drawn from the school’s FRM bin, while 126 students (35%) are drawn from the school’s non-FRM 
bin. Results using the adjusted income distributions that are analogous to what we show in Table 4 
are presented in Table B.1. 

The results in Table B.1 are very similar to what we show in the main text. A reason for the 
similarity is that the within versus between-school variance shares of student income are similar in 
either case (in our baseline condition in the main paper, roughly 73% of the variance is within schools; 
with these adjusted distributions, the within-school variance is 64%). Given the high degree of 
correspondence between the results using the full and adjusted income distributions, we do not 
emphasize this issue strongly. 
 
Appendix Table B.1. Accuracy of the One-Step and Two-Step Value-Added Estimates Compared 
to True Teacher Quality Values. School Income Distributions Adjusted to Match DESE Reported 
School-Level FRM Rates. Various Teacher and Student Sorting Scenarios. 250 Replications.  
 Baseline 

(0 Corr) 0.2 Corr 0.6 Corr 

 1-Step 2-Step 1-Step 2-Step 1-Step 2-Step 
Rho 0.6526 0.6688 0.6647 0.6738 0.6829 0.6617 
MSE 0.0209 0.0198 0.0206 0.0195 0.0197 0.0197 

Notes: The correlation values represent the overall correlation between true teacher quality and student income, both 
aggregated at the school level. All other parameters aside from the teacher quality correlation and the school-level 
student income distributions are set to the baseline values reported in Table 1. As in Table 2, Rho indicates the 
correlation between teachers’ value-added estimates and true quality, and MSE is the mean squared error. 
 
 
  



 

45 
 

Appendix C 
Negative Student-Teacher Sorting 

 
Table 4 shows that for both VAMs, as positive student-teacher sorting increases between 0.00 

and 0.20, accuracy of the value-added estimates improves. Moreover, this pattern is present for the 
one-step VAM through the most strict sorting scenario we consider (a 0.60 correlation between 
student income and teacher quality). In the text we explain that the source of improvement is 
correlated bias; the bias introduced into the models in the positive student-teacher sorting scenarios 
is positively correlated with true teacher quality and offsetting other biases in the models. The 
“overcorrection bias” in the two-step VAM eventually offsets the correlated sorting bias at high levels 
of sorting. This same phenomenon also explains why the FMOM correction does not improve model 
performance in the high-sorting cases for either model; i.e., it reduces correlated bias. 

To test this explanation empirically we report results from simulations with negative student-
teacher sorting – i.e., where teacher quality is negatively correlated with student income. With negative 
sorting, the bias introduced is in the opposite direction of the truth. Thus, bias reduction should 
improve the accuracy of teachers’ value-added estimates. There is no evidence in the literature to 
support negative sorting as realistic, but these models are instructive about the mechanism driving our 
findings in the positive-sorting condition. If the correlated-bias explanation is correct, negative sorting 
should worsen model performance overall. Moreover, it should increase the accuracy gains from 
employing Lockwood and McCaffrey’s FMOM correction. 

Table C.1 shows results analogous to Tables 4 and 7 but where we impose negative 
correlations between teacher quality and student income. For brevity we report selected results from 
cases where the correlation between teacher quality and student income is set to -0.20 and -0.60. We 
also repeat the baseline “zero correlation” results for ease of comparison. Consistent with the 
positively-correlated-bias explanation for our main findings, when there is negative student-teacher 
sorting both models consistently perform worse as the degree of sorting increases. The performance 
of the one-step VAM deteriorates more rapidly. In addition, the FMOM correction improves model 
performance with negative sorting, particularly for the one-step VAM. 
 
Appendix Table C.1. Accuracy of the One-Step and Two-Step Value-Added Estimates Compared 
to True Teacher Quality Values. Various Negative Teacher Sorting Scenarios. With and Without the 
Feasible Method of Moments Correction. 250 Replications. 
  Baseline 

(0 Corr) -0.2 Corr -0.6 Corr 

  1-Step 2-Step 1-Step 2-Step 1-Step 2-Step 
Baseline  
(No TME Correction) 

Rho 0.6609 0.6795 0.6438 0.6713 0.5854 0.6184 
MSE 0.0208 0.0186 0.0212 0.0189 0.0228 0.0208 

        

FMOM Rho 0.6675 0.6679 0.6652 0.6650 0.6407 0.6250 
MSE 0.0186 0.0186 0.0186 0.0186 0.0193 0.0200 

Notes: The correlation values represent the overall correlation between true teacher quality and student income, both 
aggregated at the school level. Values in the FMOM panel are taken from models that apply the Lockwood and 
McCaffrey (2014) feasible method of moments correction to account for test measurement error. All other parameters 
are set to the baseline values reported in Table 1. As in Table 2, Rho indicates the correlation between teachers’ value-
added estimates and true quality, and MSE is the mean squared error.  
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Appendix D 
Estimating Average Forecast Bias  

 
We estimate the average forecast bias in the value-added estimates used throughout our paper 

by replicating the procedure used by Chetty et al. (2014) in Table 3 of their study. The idea is to use 
information typically unobserved by the researcher to estimate the bias from VAMs that exclude such 
information. In their study the unobserved information comes from IRS tax records; our simulations 
facilitate a similarly-spirited test where the observed information is the noisy FRM indicator and the 
unobserved information is true family income, which we know because we control the DGP. 

We begin by running the entire simulation three times with a fixed teacher quality vector, 

capturing the value-added estimates for each teacher from each simulation run, which we denote ŝrθ  
for teacher s  in simulation run r.19 We then estimate the following jack-knife regression: 

3 1 1 2 2
ˆ ˆ ˆ .s s s sθ γ θ γ θ ε= + +          (D.1) 

The predicted values taken from the estimation of (D.1), 3sθ , are saved and used later in the process. 
We do this for both the one- and two-step VAMs to produce structure-specific jack-knifed estimates. 

Following Chetty et al. (2014), the next step is to produce residualized family income values 
that capture the portion of true income not explained by observed characteristics, which we do using 
the following regression: 

0ist ist s istI α κ= + + +1α τX  ,        (D.2) 

where istI  is the family income of student i taught by teacher s in time t, istX  is the vector of observable 
student characteristics included in the value-added models (in our application, student i’s FRM status, 
classroom FRM share, and prior year exam score), and sτ  is a vector of teacher fixed effects.20 
Following the estimation of equation (D.2) the residualized income values are calculated as 

0ˆ ˆist ist istII α= − − 1X α  .         (D.3) 

A parallel process is used to produce residualized values of average classroom income, stI , and student 

time-t test scores, istY .  
 

We then estimate the following prediction regression: 

0 1 2ist ist st s istY I Iδ δ δ τ ζ= + + + +          (D.4) 

in which the portion of student exam scores not explained by observable student characteristics is 
predicted based on the portion of family income characteristics that are not explained by observable 
                                                 
19 We also allow a fraction of teachers to randomly change schools each run. This incorporates an appropriate level of 
persistent teacher sorting along the student income dimension.  
20 The simulation subscript 3r =  is suppressed for notational simplicity in all equations from (D.2) onward. 
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student characteristics. Put differently, we partial out the information present in the observable student 
characteristics included in the VAMs from both exam scores and family income and then estimate 
how much of the remaining variation in student exam scores can be explained by the additional 
information present in the true, unobserved family income values. The predicted values from equation 

(D.4), 0 1 2
ˆ ˆ ˆˆ

ist ss ti tY I Iδ δ δ= + +   , are then used as the outcome variable in the following model: 

0 1îst ist istY β β θ υ= + +  .         (D.5) 

This equation captures the extent to which variation in student test scores that is not explained by 
observable student characteristics, but is explained by unobservables (true family income in our case), 
is correlated with the estimates of teacher quality. As demonstrated in Chetty et al. (2014), the 

coefficient 1̂β  in (D.5) is an estimate of the average forecast bias in the teacher effect estimates. 
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Appendix E 
Test Measurement Error Correction when  

Classroom Aggregates are Omitted from the Models 
 

Table 7 shows that the Feasible Method of Moments (FMOM) procedure improves accuracy 
in the one-step model (as measured by MSE) in the no- and moderate-sorting scenarios, while it 
provides no benefit and may slightly reduce accuracy in the two-step model. In the text we posit that 
the lack of improvement in the two-step model results from (a) the inclusion of classroom aggregates, 
which should reduce the bias associated with TME as discussed in Lockwood and McCaffrey (2014) 
and (b) the fact that the coefficients on the aggregate controls in the two-step model are not attenuated 
as strongly, as discussed in Section 2. 

 To empirically examine this explanation, in this appendix we report results from models that 
omit the classroom aggregates from the estimation of both the one and two-step models. Table E.1 
reports two sets of results for each model – results estimated with no TME correction and results 
using Lockwood and McCaffrey’s FMOM procedure. We also present our baseline results that include 
the classroom aggregates and do not apply the FMOM procedure for ease of comparison. The results 
show that when the classroom aggregates are not included in the models, the FMOM procedure 
improves the accuracy of both models, with the biggest impact seen in the one-step VAM.  
 
Appendix Table E.1. Accuracy of the One-Step and Two-Step Value-Added Estimates Compared 
to True Teacher Quality Values. Various Teacher Sorting Scenarios. With and Without the Feasible 
Method of Moments Correction (Lockwood and McCaffrey, 2014). Classroom Aggregates Omitted. 
250 Replications. 
   Baseline 

(With Aggs, 
No TME Corr) 

W/o Aggs, 
No TME 

Correction 

W/o Aggs, 
FMOM 

   1-Step 2-Step 1-Step 2-Step 1-Step 2-Step 

Cross-School 
Sorting 
Conditions 
(Table 4) 

Baseline  
(0 Corr) 

Rho 0.6609 0.6795 0.6484 0.6599 0.6654 0.6657 
MSE 0.0208 0.0186 0.0254 0.0207 0.0189 0.0188 

        

0.2 Corr Rho 0.6780 0.6835 0.6690 0.6772 0.6578 0.6590 
MSE 0.0201 0.0183 0.0246 0.0199 0.0191 0.0190 

        

0.6 Corr Rho 0.7054 0.6609 0.7072 0.7010 0.6206 0.6203 
MSE 0.0189 0.0189 0.0230 0.0185 0.0202 0.0202 

Notes: The correlation values represent the overall correlation between true teacher quality and student income, both 
aggregated at the school level. Values in the FMOM column are taken from models that apply the Lockwood and 
McCaffrey (2014) feasible method of moments correction to account for test measurement error. Results in the baseline 
column replicate values from Table 4 and are taken from models that do not make a test measurement error correction 
and include classroom aggregates. Classroom aggregates are excluded from all other models. All other parameters are set 
to the baseline values reported in Table 1. As in Table 2, Rho indicates the correlation between teachers’ value-added 
estimates and true quality, and MSE is the mean squared error.
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Appendix F 
Teacher Misclassifications in High- and Low-Income Schools 

 
We measure the performance of the VAMs in the main text using two primary metrics – 

correlation with the true values and MSE. Educator accountability systems in practice typically employ 
some type of classification system to categorize teachers. The measures we use will be indicative of 
the degree of misclassification under general conditions. Nonetheless, to explore this contextual issue 
further we directly examine the performance of the models in terms of their ability to identify high- 
and low-performing teachers given fixed classification rules. We focus on classifications that identify 
the bottom and top 10 percent of teachers in the value-added distribution. 

Appendix Table F.1 shows the numbers of teachers identified in the bottom and top deciles 
based on true teacher quality and by estimates from the one- and two-step VAMs. We further split 
the sample into high-income (top quintile) and low-income (bottom quintile) schools. With random 
sorting of teachers to schools in the first two rows, of the 60 total teachers in the top decile, the table 
shows that on average across simulations, 12 are teaching in top-quintile schools and 12 in bottom-
quintile schools, as expected. As teachers are sorted to schools by quality in subsequent rows, 
imbalances emerge.  

As predicted by Figure 1, estimates from both the one- and the two-step VAMs imply that 
there are more top decile teachers in high-income schools and more bottom decile teachers in low-
income schools. This is true even in the random sorting case, with the difference most pronounced 
for the one-step VAM. These results reflect the fact that due to the income effect on student test 
scores, and our imperfect FRM proxy, a happenstance assignment to a high-income school leads to a 
higher value-added estimate. Moving down the table, as student sorting increases, true teacher quality 
is no longer evenly distributed across school types and the one-step VAM improves relative to the 
two-step VAM as measured by misclassification rates.  
 
Appendix Table F.1. Teacher Misclassification Counts in High- and Low-Income Schools. Various 
Teacher Sorting Scenarios. 250 Replications. 
   Number of 
   Bottom Decile Teachers 

As Measured By: 
Top Decile Teachers 

As Measured By: 
   True TQ 1-Step 2-Step True TQ 1-Step 2-Step 

Cross-School 
Sorting 
Conditions 
(Table 4) 

Baseline 
(0 Corr) 

High-Income 12 6 11 12 24 18 
Low-Income 12 18 12 12 5 9 

        

0.2 Corr High-Income 10 5 10 14 26 18 
Low-Income 15 19 12 10 5 9 

        

0.6 Corr High-Income 5 3 9 21 29 19 
Low-Income 21 22 13 5 3 8 

Notes: High-income refers to schools in the top quintile of the student household income distribution, while low-income 
refers to schools in the bottom quintile. Counts represent the average number of teachers who end up in each decile 
over 250 replications, rounded to the nearest integer value. All other parameters are set to the baseline values reported in 
Table 1. 
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Appendix G 
Data Generating Process Supplement 

 
 

This appendix provides information supplementary to Table 1 in order to give the full 
parameterization of the DGP, with the aim of easing future replications and extensions.  

Appendix Table G.1 provides information on several additional parameters of the DGP not 
directly reported on in Table 1. We have also posted the baseline simulation program used to produce 
Table 2 online, along with supplementary data files containing the test measurement error 
heteroscedasticity function and the school income distribution data for our baseline student sorting 
scenario. Combined, Table 1, Appendix Table G.1, and the files available online provide all that is 
needed to replicate our baseline simulation. 
 
 
Appendix Table G.1. Additional Parameters for the DGP. 

 Equation Description Value 

2λ   (9), DGP DGP parameter for continuous family income 0.13 

3λ   (9), DGP DGP parameter for classroom average income 0.02 

1ζ
σ   (9), DGP Mean standard deviation of test measurement error across all students 

(Heteroskedastic)  0.25 

2ζ
σ  (9), DGP Standard deviation of residual model error, excluding TME 

(Homoskedastic) 0.25 

ασ   (9), DGP Standard deviation of student ability 0.54 

vσ   (11), FRM SD of measurement error in observed income $30,000 
Notes: The individual test measurement errors are heteroskedastic, so we report the mean value of the standard 
deviation of test measurement error across all students. ασ  is not a free parameter; its value is determined by the other 
parameters specified in the DGP. 
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