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Abstract 

UTeach is a well-known, university-based program designed to increase the number of high-quality 

STEM teachers in the workforce. Despite substantial investment and rapid program diffusion, there is 

little evidence about the effectiveness of UTeach graduates. Using administrative data from the state of 

Texas, we measure the impact of having a UTeach teacher on student test scores in math and science in 

middle schools and high schools. We find that students taught by UTeach teachers perform significantly 

better on end-of-grade tests in math and end-of-course tests in math and science by 8% to 14% of a 

standard deviation on the test, depending on grade and subject. 

Keywords: Teacher preparation; STEM; educator effectiveness 

JEL codes: I20, I23 

 



I. Introduction 

A growing number of policymakers argue that for the U.S. to remain a worldwide economic and 

technological leader, it must do more to improve the quality of K–12 science, technology, engineering, 

and mathematics (STEM) education (e.g., Peterson et al., 2011). Given the growing body of evidence 

that educators are the most important determinant of student achievement outside of family and home 

influences (Borman & Dowling, 2008; Goldhaber, 2008; Hanushek et al., 2005; Heck, 2009; Ingersoll, 

2001; Rice & Schwartz, 2008), it is no surprise that policymakers are focusing on teachers as a lever for 

improving STEM outcomes.1 For instance, in fall 2009, President Obama asked his President’s Council of 

Advisors on Science and Technology (PCAST) to draft a series of recommendations regarding the “most 

important actions that the administration could take to ensure that the United States is a leader in STEM 

education in the coming decades” (Holdren et al., 2010, p. vii). Among the council’s findings was that 

math and science teachers are the “single most important factor in the K–12 education system…crucial 

to the strategy of preparing and inspiring students in STEM” (Holdren et al., 2010, p. 57).  

The issue of STEM teachers is twofold. First, there are concerns about the quality of the existing 

STEM teacher workforce, particularly the prevalence of teachers without sufficient training in advanced 

subjects. For example, 61% of chemistry teachers and 67% of physics teachers do not hold a degree or 

certificate in those fields (Augustine, 2007). In addition, measures of overall science learning in the U.S. 

such as the National Assessment of Educational Progress (NAEP) find that science scores for high school 

students have shown no signs of improvement since 2009.2 Second, there are longstanding issues of the 

quantity of STEM teachers and the difficulty of staffing STEM positions. Attracting STEM-trained 

                                                 
1 Differences between assignment to effective versus ineffective teachers have been found to have profound impacts 

on students’ test scores and later life achievement (Chetty, Friedman, & Rockoff, 2014a, 2014b; Clotfelter, Ladd, & 

Vigdor, 2007; Hanushek & Rivkin, 2010; Kane & Staiger, 2008). 
2 Garcia Mathewson, Tara. “NAEP: 4th, 8th grade science scores are up; 12th grade scores are flat.” Education Dive. 

27 October, 2016.  
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individuals to the teaching workforce is particularly difficult because of higher paying jobs outside of 

teaching (West, 2013), and between 2000 and 2012, 20-30% of schools reported difficulty filling STEM 

vacancies (Cowan et al., 2016).  

UTeach is a relatively new program that is designed to address these quality and quantity issues 

by “transforming the way universities prepare teachers”3 with an approach that the Obama 

Administration believes “has shown strong results”.4 President Obama’s educational initiatives, such as 

Race to the Top, Change the Equation, and 100Kin10, place STEM teacher preparation at the center of 

national education reform efforts, and UTeach is featured in each of these programs. More recently it 

was recognized by the Obama Administration as a national model for increasing the number of teachers 

filling hard-to-staff positions in STEM (Ed Week, 2010).5 

The UTeach program was created in 1997 by faculty at the University of Texas at Austin (UT 

Austin) in an effort to streamline the process of earning a degree in math or science alongside a teaching 

credential while graduating in a timely manner. Because of the perceived success of the program, it has 

spread rapidly. In 2014, the National Math and Science Initiative awarded a $22.5 million grant to 

continue the expansion of UTeach. Today it is available at 44 universities in 21 states, including state 

flagship universities such as UC Berkeley, the University of Florida, and West Virginia University, and is 

expected to produce more than 9,000 math and science teachers by 2020.  

A selling point of UTeach is its approach to recruiting STEM majors to become teacher 

candidates while providing a pathway to have a STEM teaching credential in hand upon graduation. 

Students in UTeach take courses in their major along with classes for future teachers in a streamlined 4 

year degree plan. Thus, UTeach has the potential to improve both the quantity and quality of the STEM 

                                                 
3 National Math and Science Initiative. http://www.noia.org/wp-content/uploads/2013/03/40100.pdf 
4 https://www.whitehouse.gov/sites/default/files/docs/stem_teachers_release_3-18-13_doc.pdf 
5 Robelen, Erik W. 20 January, 2010. Obama Unveils Projects to Bolster STEM Teaching. Education Week. 

http://www.edweek.org/ew/articles/2010/01/20/18stem_ep-2.h29.html 
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teaching workforce by reducing barriers to entry to the teaching profession for STEM majors. As 

discussed in more detail below, the program touts three key elements that drive its success.6 First, STEM 

majors are recruited as early as their freshman year; second, pedagogy courses are designed specifically 

for the program; and third, master and mentor teachers provide detailed guidance with early and 

intensive field experiences. 

 There are several reasons why UTeach teachers may be more effective at teaching STEM 

courses than the average teacher. First, by drawing from a pool consisting exclusively of math and 

science majors, the program potentially brings individuals with greater ability into the system than a 

typical teacher training program. On average, STEM majors who enter the teaching profession score 

about 100 SAT points higher than non-STEM majors (Goldhaber & Walch, 2013). Indeed, in the sample 

used in this study, the average replication site UTeach graduate scores 0.50 standard deviations higher 

on STEM certification exams than the average non-UTeach graduate. Second, subject-specific training 

may improve teacher performance in math and science at the secondary level, because some evidence 

suggests that greater math and science knowledge of teachers is associated with greater effectiveness – 

as measured by a teacher’s ability to raise student test scores – at the high school level (Clotfelter, Ladd, 

& Vigdor, 2010; Goldhaber & Brewer, 1997; Goldhaber et al., 2016). Third, some UTeach-affiliated 

institutions such as UT Austin are more selective and thus may produce more effective teachers by this 

selection effect alone (Clotfelter et al., 2010).  

 Yet while selectivity of UTeach programs (UT Austin in particular) suggests that UTeach may be 

drawing more academically prepared individuals into the teacher workforce, there is reason to be 

cautious in thinking that this will necessarily result in significantly better student outcomes. For instance, 

the evidence on whether measures of college selectivity predicts teacher effectiveness is mixed (Harris 

                                                 
6
 http://www.senate.state.tx.us/75r/Senate/commit/c530/meetings/082304/downloads/Charge4_MRankin.pdf 
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& Sass, 2006).7 Moreover, recent studies of traditional college and university-based teacher preparation 

programs (TPPs) suggests limited institutional level differences between TPPs (Goldhaber, Liddle, & 

Theobald, 2013; Koedel, Parsons, Podgursky, & Ehlert, 2015; von Hippel, Bellows, Osborne, Lincove, & 

Mills, 2016). In particular, Koedel et al. (2015) and von Hippel et al. (2016) emphasize that observed 

differences between TPPs are largely due to sampling variability rather than true differences between 

programs.8  

 In this paper, we use administrative data covering all math and science teachers and their 

students in public secondary schools in Texas to assess whether graduates of UTeach-affiliated programs 

in Texas are more effective than the average non-UTeach teacher as measured by student performance 

on standardized assessments. In doing so, we provide rare estimates of variation in STEM teacher 

quality in secondary schools, where subject-specific training may be most important (see also Clotfelter 

et al., 2010; Goldhaber et al., 2016; Jackson, 2014; Xu et al., 2011). We find that, relative to non-UTeach 

teachers in the state, UTeach-trained teachers are more effective as measured by their ability to raise 

student test scores in math and science. There are two important caveats: first, estimates for replication 

site UTeach graduates are not statistically significant for high school science or middle school math; and 

second, some results are sensitive to the decision of whether to include school fixed effects. However, 

as we describe, we also explore the sensitivity of the findings to the inclusion of school fixed effects and 

conclude that they are likely related to the sorting of UTeach teachers into schools that also tend to hire 

                                                 
7 There is some evidence, for instance, that the positive findings for Teach For America teachers are partially 

explained by the selectivity of the Teach For America program (Xu et al., 2011); however, in their random 

assignment study, Clark et al. (2013) find that measures such as undergraduate selectivity and licensure scores do 

not explain any of the TFA effectiveness differential. 
8 Von Hippel et al. (2016) is especially relevant because, like this study, their sample consists of TPPs in Texas. 

However, while von Hippel et al. (2016) find little to no difference across TPPs in Texas, that does not guarantee 

that we will fail to find a UTeach effect because we have a much larger sample (five years of data compared to one), 

allowing for more precise estimates which could potentially mitigate the challenges imposed by sampling 

variability. In addition, one of our outcomes is performance on end-of-course exams, which are not included in the 

von Hippel et al. (2016) study and potentially allow for greater differentiation between TPPs due to the more 

advanced materials covered in EOC exams. 
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more effective teachers; i.e., the additional checks we perform tend to confirm the overall finding that 

UTeach teachers are more effective in general. 

Based on our estimates, the difference between graduates from UTeach sites and non-UTeach 

teachers in the effectiveness with which they teach math courses is greater than the difference between 

novice teachers and teachers with 10+ years of experience in high school and is similar to the difference 

between novice teachers and teachers with 7 years of experience in middle school. While we find similar 

effects for Austin and UTeach replication site graduates in math, we find that in high school science, 

Austin graduates are substantially more effective than UTeach replication site graduates and other 

teachers in the state, which is partially but not fully explained by our measures of institutional 

selectivity, such as the SAT math scores of incoming students. Finally, while not the focus of the paper, 

we show descriptive evidence that the introduction of UTeach at partner universities has been 

associated with an increase in the number of STEM teachers produced. 

 
II. UTeach Overview and Prior Research 

 UTeach introduced an approach that was not typically seen in higher education. UTeach 

undergraduate students can obtain a teaching certificate and graduate with a math or science degree in 

4 years while taking teaching classes designed specifically for math and science teachers. The program 

streamlines content and pedagogy coursework to combine STEM degrees with secondary certification 

without adding time or cost to 4-year degrees. This feature is used as a recruitment strategy to attract 

STEM majors. According to internal data collected by UTeach, 55% of Austin UTeach graduates have 

graduated within 4 years, which is slightly higher than the university’s overall average of 51-2%.9 The 

                                                 
9 UTeach average obtained through personal correspondence with Michael Marder, Co-Director of UTeach, 9 

December 2016. Overall Austin average obtained through 2007 and 2009 entering classes from IPEDS: 

http://nces.ed.gov/collegenavigator/?q=Austin&s=TX&pg=2&id=228778 

http://nces.ed.gov/collegenavigator/?q=Austin&s=TX&pg=2&id=228778
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UTeach model has also been scaled up and replicated nationally in more than 40 universities with the 

support of both public and private funding.10 A description of what UTeach sees as the key 

characteristics of its program follows. 

Recruitment and Selection Strategies. Undergraduate STEM majors are recruited into the 

UTeach program as early as their freshman year with no selection criteria for entry. The program offers 

compact degree plans that allow STEM majors to complete their degrees and certification in 4 years. In 

addition, UTeach provides interested undergraduates with two one-credit-hour, field-based courses free 

of charge, allowing undergraduates to try teaching before committing to completing the teaching 

option.11 Based on their experiences with these courses, undergraduates either choose to continue in 

the program or self-select out of the teaching option early in their college career. 

Preparation and Support for Preservice Teachers. In addition to the content courses required for 

their major, students who continue with the UTeach program complete a set of STEM-specific pedagogy 

courses that emphasize inquiry-based instruction, connections between the theory of the pedagogy and 

the practice of teaching, the interconnections between math and science, and the importance of diverse 

historical and methodological perspectives. 

Highly Structured Field Experiences. STEM majors enrolled in UTeach courses engage in 

approximately 40 hours of structured field experiences before student teaching, all of which are 

supervised by master teachers (non-tenured clinical faculty with prior teaching experience) and trained 

classroom mentor teachers. Before entering the student teaching semester, students are paired with 

local teachers who are trained to supervise and observe the UTeach student, offering multiple points for 

teacher candidates to reflect on their strengths and needs. 

                                                 
10 These funders include the National Math and Science Initiative (NMSI), Exxon Mobil, Howard Hughes Medical 

Institute (HHMI), and state and federal resources. 
11 According to UTeach staff, between 2008 and 2012, 21% (lowest year) and 38% (highest year) of students who 

enrolled in this initial free field-based course at Austin eventually graduated from UTeach. 
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To guide program implementation at expansion sites, UTeach staff created the UTeach Elements 

of Success, a set of critical program components.12 UTeach has also developed resources and support 

materials for all operational and instructional aspects of the UTeach model. Universities replicating 

UTeach receive direct and individualized support, including access to the UTeach Operations Manual, 

UTeach curriculum, student work samples, support materials, and support events, including course 

workshops and retreats, topical webcasts, the annual UTeach Conference, and UTeach Open House. 

Research on UTeach has been conducted primarily by UTeach-affiliated faculty and their 

graduate students, with little or no third-party evaluation. Peer-reviewed studies of UTeach programs in 

the last 10 years have employed descriptive or correlational designs that relied on surveys, interviews, 

observations, reviews of student and teacher discourse, and reviews of transcripts, lesson plans, and 

other artifacts. One category of studies focuses on preservice and in-service teachers’ knowledge, use, 

and perceptions of the efficacy of specific instructional approaches learned in the UTeach courses 

(Confrey, Makar, & Kazak, 2004; Dickinson & Summers, 2010; Marshall & Young, 2006). Another set of 

studies explores preservice teachers’ development and use of mathematical and statistical discourse 

(Ares, Stroup, & Schademan, 2009; Makar & Confrey, 2005). Finally, studies by Stroup, Hills, and 

Carmona (2011) and Marder and Walkington (2014) focus on exploring statistical approaches and 

methods for analyzing administrative and qualitative teacher and student data. The latter finds, for 

example, that the classroom observation protocol developed for UTeach is fairly weakly correlated with 

value-added scores. 

 

                                                 
12 UTeach Elements of Success: https://institute.uteach.utexas.edu/sites/institute.uteach.utexas.edu/files/uteach-

elements-of-success-2011.pdf  

https://institute.uteach.utexas.edu/sites/institute.uteach.utexas.edu/files/uteach-elements-of-success-2011.pdf
https://institute.uteach.utexas.edu/sites/institute.uteach.utexas.edu/files/uteach-elements-of-success-2011.pdf
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III. Data 

We use detailed student-level administrative data that link students in Texas to their teachers 

for five school years (2011–12 through 2015–16).13 Texas has the second largest public K–12 enrollment 

in the United States, and large minority and disadvantaged student populations: about 52% of its 

students are Hispanic, 13% Black, and 30% White, and about 60% of students identified as economically 

disadvantaged.14 

 The student-level longitudinal data we use in the analysis contain math and science scores as 

primary outcome variables.15 For math, these include both end-of-grade (EOG) and end-of-course (EOC) 

exams, with the bulk of EOC scores coming from Algebra I (77.5%) and the remainder Geometry (16.9%) 

and Algebra II (5.5%).16 The share of Geometry and Algebra II students is relatively small because those 

tests were administered for only two of the five years some years that our sample covers. For science, 

we include EOC scores as outcome measures (81.8% Biology, 15.4% Chemistry, and 2.8% Physics), with 

Grade 8 EOG science used as a control for students in ninth grade.17 Although estimating models with 

science test scores as an outcome variable in value-added models has not been as thoroughly vetted as 

math and reading, we perform a number of robustness checks, such as controlling for eighth-grade 

science scores for upper-grade students and estimating UTeach effects on a sample of schools that do 

not seem to group students of similar ability by classroom. Our results for EOC science are similar when 

                                                 
13 We also use test score data from 2010–11 as prior test scores for regressions using the 2011–12 data for the 

outcome measure. 
14 tea.texas.gov/acctres/Enroll_2013-14.pdf 
15 In the 2010–11 school year, all students between grades 3 and 11 took the TAKS in math. However, with the 

introduction of EOC exams in 2011–12, the STAAR test began to be phased in with the 2011-12 school year. Since 

then, STAAR has been administered in Grades 3–8 with additional EOC exams in Algebra I and Biology. In 2012 

and 2013 only, there were also EOC exams for Algebra II, Geometry, Chemistry, and Physics. For students taking 

an EOC exam, we consider their most recent test score to be their lagged test score. A Grade 8 science EOG test has 

been administered since 2012. See http://tea.texas.gov/student.assessment/staar/ for more information. 
16 We also use students’ prior reading test scores as a control variable. 
17 We do not use EOG science scores as an outcome variable because this test is not administered to sixth- or 

seventh-graders. EOG (i.e., 8th grade) science scores are only used as control variables in regressions where EOC 

science scores are the outcome. 

http://tea.texas.gov/student.assessment/staar/
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performing these checks. Finally, students’ scale scores are standardized to have mean 0 and standard 

deviation 1 at the subject-grade-year-test level within the state.  

In addition to standardized test scores, we observe a variety of student characteristics: 

race/ethnicity, gender, free- or reduced-price lunch (FRL) eligibility, gifted status, limited English 

proficiency (LEP) status, and disability status, which are used as covariates in our analyses. In addition, 

all students are linked to teachers based on course enrollment.18 

Teacher personnel files contain information on teachers’ experience, undergraduate and 

graduate institutions, demographics, and other supplemental background variables. These are likewise 

used as covariates for some of the models in the analysis that follows. UTeach teachers are identified by 

combining where each teacher earned his or her degree, graduation year, and subject of teaching 

certificate. According to UTeach, it is possible to obtain undergraduate training to become a STEM-

certified teacher from UTeach universities only by going through the UTeach program. 

 We begin by describing placement patterns of UTeach graduates by UTeach site, year, and 

subject; subjects include EOG math (Grades 6–8), EOC math (Algebra I, Algebra II, and Geometry), and 

EOC science (Biology, Chemistry, and Physics). A teacher is counted in a given sample if he or she 

teaches a student in that sample; thus, it is possible for teachers to appear in multiple samples. For 

example, if a teacher taught both eighth-grade math and Algebra I, then he or she would appear in both 

the EOG math and EOC math samples. We display placement patterns in this manner because we obtain 

estimates separately for these three samples. 

Counts of UTeach teachers by campus and year are shown in Table 1. Two patterns are readily 

apparent. The first is that the number of teachers from UT Austin is relatively steady over time, whereas 

the number of teachers from the replication sites grows substantially. Austin’s program dates back to 

                                                 
18

 Teachers of record in students’ core math and science courses are linked to them for the analysis. Student 

observations linked to multiple teachers (e.g., due to coteaching, student mobility) are weighted in proportion to the 

amount of time spent with each teacher, based on available enrollment data (Hock & Isenberg, 2012). 
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1997, well before the coverage of our data, suggesting the number of UTeach teachers graduating from 

Austin has more or less stabilized, whereas many of the other sites began their UTeach replication 

relatively recently and are ramping up graduate numbers. For example, although the number of UTeach 

graduates in EOC math classrooms from Austin was virtually the same in 2012 and 2016 (115 teachers 

vs. 120), the number increased from 12 to 51 at Houston and from 12 to 80 at North Texas during the 

same time frame. Second, UTeach graduates are concentrated in EOC subjects instead of the EOG 

grades. In 2016, for example, only 18 Austin UTeach graduates taught students who took EOG tests, 

while 120 taught math and 82 science EOC subjects, respectively. 

While this paper is primarily interested in the question of whether UTeach programs produce 

more effective teachers than other TPPs, given the above discussion about the difficulty of staffing STEM 

positions, it is also important to consider whether the introduction of UTeach is also associated with an 

increase in the number of STEM teachers produced. Table 2 displays the number of teachers who 

appear in our analysis sample by campus and graduation calendar year. At the two replication sites 

whose first UTeach graduates finished in 2010, Houston and UNT, we see substantial increases in the 

number of STEM teachers. At Houston, for example, the three years prior to UTeach saw 10, 5, and 5 

teachers enter the workforce (average of 7 per year), while in the three years after, there was an 

increase to 10, 11, and 27 teachers (16 per year). At UNT, the increase was even larger, from 19, 19, and 

13 teachers (17 per year) to 30, 29, and 38 teachers (32 per year). Thus, while not conclusive, this 

descriptive evidence is consistent with UTeach fulfilling its goal of recruiting more students to become 

STEM teachers.  

Table 3 presents descriptive statistics of the students taught by UTeach and non-UTeach 

teachers included in the study. As with the counts discussed above, the samples used here are, of 

necessity, limited to grades and subjects in which standardized tests are administered to students. We 

keep the same groupings of teachers by EOG math, EOC math, and EOC science, while also splitting the 
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sample into Austin UTeach, replication (non-Austin) UTeach, and non-UTeach teachers. We choose this 

grouping for two reasons. First, to the extent that Austin UTeach produces teachers that are more 

effective on average, an important question is whether that success can be re-produced at other 

campuses. Second, because the replication sites do not have sufficient observations to obtain campus-

by-campus estimates with any degree of precision, we group them together to measure a collective 

replication site effect. 

In the EOC courses where Austin graduates are concentrated, for Austin graduates relative to 

non-UTeach graduates, the students of Austin graduates are similar in EOC math but more advantaged 

in EOC science. In EOC science, Austin graduates are less likely to teach FRL-eligible students and more 

likely to teach gifted students and students whose prior achievement was substantially higher.19 On the 

other hand, UTeach graduates from the replication sites are more likely to teach black students, LEP 

students, and students with lower prior achievement, compared to graduates from Austin.20 

 Teacher characteristics of UTeach and non-UTeach teachers are shown in Table 4. The typical 

UTeach teacher—whether from Austin or not—has fewer years of experience than the typical non-

UTeach teacher. This is especially pronounced for the non-Austin group because, as discussed 

previously, these programs are relatively new: in all subjects, the percentage of teachers from 

replication sites in their first through third year of teaching is about 80%. In addition, the average 

selectivity of the undergraduate institution attended is higher for both UTeach samples (Austin and 

replication) —dramatically so for Austin. UTeach graduates are also more likely to be present in the 

certification database as STEM-certified; in fact, all UTeach teachers in our sample have a STEM 

                                                 
19 Prior math scores do not average 0 across all students in the EOC math sample due to selection into advanced 

math courses (test scores are standardized among all students in the state). For example, if students progress to 

Geometry only if they have sufficiently high Algebra I scores, then the prior test scores for students taking 

Geometry will be higher than the mean of zero because of this selection mechanism. UTeach estimates with EOC 

scores as the outcome are similar when including 8th grade EOG math and reading scores as additional controls. 
20 The patterns for school-level measures of student demographics and ability for schools with UTeach present vs. 

all schools are similar to the student-level patterns in Table 3. 
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certification because of the way we construct the UTeach variable, in which a teacher has to graduate 

from a UTeach campus with a STEM certification. In contrast, more than one third of EOG math teachers 

are either not in the certification database or do not have a STEM-specific certification. Finally, math 

UTeach teachers are substantially more likely to be Hispanic than the average teacher in Texas. 

 

IV. Methods  

Our baseline analysis measures the difference in relative effectiveness between UTeach-trained 

teachers and comparison teachers who teach math or science to secondary students. Our approach 

follows similar studies of individual TPPs such as Teach For America and the New York City Teaching 

Fellows Program (Boyd, Lankford, Loeb, & Wyckoff, 2006; Hansen, Backes, Brady, & Xu, 2015; Kane, 

Rockoff, & Staiger, 2008). We estimate the following equations: 

𝑦𝑖𝑠𝑡 = 𝛽0 + 𝛽1𝑦𝑖𝑠𝑡−1 + 𝛽2𝑋𝑖 + 𝛽3𝑈𝑇𝑒𝑎𝑐ℎ𝑖 + 𝛽4𝑇𝑗 + 𝜀𝑖𝑠𝑡  , (1) 

 

where 𝑦𝑖𝑠𝑡  indicates the score on an EOG or EOC math or science exam (with separate regressions for 

each) for student i in school s in year t, 𝑦𝑖𝑠𝑡−1 a vector of cubic functions of prior year test scores in math 

and reading (and science, when science performance is the outcome measure), 𝑈𝑇𝑒𝑎𝑐ℎ𝑖 is an indicator 

for whether student i was taught by a UTeach graduate in the tested subject, 𝑋𝑖  contains a vector of 

student i’s characteristics, including race, gender, eligibility for FRL, special education status, and gifted 

status, and 𝑇𝑗 a vector of controls for teacher characteristics, which in most models consists solely of 

experience. Students with missing prior year scores are assigned a value of 0 for prior score with an 

additional control for missing prior year scores.21 For students who took multiple tests in the prior year 

(e.g., Algebra I and EOG eighth-grade math), we use EOG scores as the measure of prior year 

                                                 
21 EOC results for students in higher grades (10 and above) are similar when controlling for eighth-grade EOG 

scores in addition to prior year EOC scores. 
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achievement in regression models. In models where EOC tests are pooled together as an outcome 

variable (e.g., EOC math score as the outcome variable), we interact subject with all control variables to 

allow the association between these variables and the outcome to vary by test type. In addition, 𝜀𝑖𝑠𝑡  

represents a randomly distributed error term. In all analyses, standard errors are clustered at the 

teacher level. 

The coefficient of interest, 𝛽3, represents the average differential effectiveness of UTeach 

graduates relative to other teachers in the state. Both experimental work and nonexperimental tests 

suggest that controlling for prior test scores as in Equation (1) is sufficient for estimating teacher effects 

with little bias (Bacher-Hicks, Kane, & Staiger, 2014; Chetty et al., 2014a; Kane, McCaffrey, Miller, & 

Staiger, 2013; Kane & Staiger, 2008), with the caveat that these studies do not examine high school 

teachers. Obtaining unbiased estimates of the effect of certain teacher characteristics on student 

achievement at the high school level is likely to be more challenging given the greater prevalence of 

specialty high schools and ability tracking (Jackson, 2014). We attempt to account for the potential that 

students with unobserved attributes correlated with test achievement are tracked into schools or 

classes (Jackson, 2014) by estimating additional models that include school or track effects. In these 

models, the effects of UTeach teachers are identified based on comparisons within the same school or 

track, where a track is defined to be all students within the same school who take the same set of 

courses in the same year. 

 To account for school effects, we estimate models where we add school fixed effects to 

Equation (1) and thus compare UTeach graduates to other teachers within the same school rather than 

to all non-UTeach teachers in the state. In these specifications UTeach-trained teachers are compared to 

teachers in similar school settings. However, as discussed in further detail below, this approach is 

potentially problematic because school fixed effects could absorb true differences in teacher 

effectiveness across schools. For example, if it were the case that UTeach teachers and the comparison 
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teachers in UTeach schools were all truly more effective on average, adding school fixed effects would 

difference out some of the true effectiveness of UTeach teachers by comparing them to more effective 

teachers. In order to investigate the possible extent of differential teacher sorting into UTeach schools, 

we estimate the following model: 

𝐶𝐸𝑅𝑇_𝑆𝐶𝑂𝑅𝐸𝑖𝑠𝑡 = 𝛽0 + 𝛽1𝑦𝑖𝑠𝑡−1 + 𝛽2𝑋𝑖 + 𝛽3𝑆𝐶𝐻_𝑈𝑇𝑒𝑎𝑐ℎ𝑖𝑠 + 𝛽4𝑇𝑗 + 𝜀𝑖𝑠𝑡 , (2) 

where 𝐶𝐸𝑅𝑇_𝑆𝐶𝑂𝑅𝐸𝑖𝑠𝑡 is the certification score of student i's teacher and 𝑆𝐶𝐻_𝑈𝑇𝑒𝑎𝑐ℎ𝑖𝑠 is an 

indicator for whether student i is in a school that ever employed a UTeach teacher. As with Equation (1), 

we estimate Equation (2) subject-by-subject, so 𝑆𝐶𝐻_𝑈𝑇𝑒𝑎𝑐ℎ𝑖𝑠 denotes ever hiring UTeach in the 

subject under consideration in order to obtain estimates of the potential degree of teacher sorting by 

subject. Because it is the comparison teachers in UTeach schools that are of interest, we omit UTeach 

teachers from all models that estimate Equation (2). In Equation (2), the coefficient 𝛽3 measures the 

extent to which a student being in a UTeach school is differentially predictive of being exposed to 

teachers with higher certification scores, controlling for student background and prior achievement in 

the same manner as our basic model in Equation (1). In addition, we also estimate the following model 

for students and teachers who are not in a UTeach school in a given year: 

𝑦𝑖𝑠𝑡 = 𝛽0 + 𝛽1𝑦𝑖𝑠𝑡−1 + 𝛽2𝑋𝑖 + 𝛽3𝐸𝑣𝑒𝑟_𝑆𝐶𝐻_𝑈𝑇𝑒𝑎𝑐ℎ𝑖𝑠𝑡 + 𝛽4𝑇𝑗 + 𝜀𝑖𝑠𝑡  , (3) 

where 𝐸𝑣𝑒𝑟_𝑆𝐶𝐻_𝑈𝑇𝑒𝑎𝑐ℎ𝑖𝑠𝑡  is an indicator for whether student i is being taught by a teacher who 

would ever teach at a UTeach school.22 In Equation (3), the coefficient 𝛽3 measures whether being 

taught by a teacher who would ever teach in a UTeach school is associated with differential student 

achievement, conditional on student demographics and prior achievement.  

 

                                                 
22 We control for teacher experience in Equation (3) to account for the possibility of teachers being in different 

stages of their careers when they teach in UTeach schools relative to non-UTeach schools. 
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Equation (1) yields an estimate of the average difference in achievement between students who 

were taught by UTeach graduates and those who were not. To investigate heterogeneity across 

programs, we decompose the UTeach coefficient into separate coefficients for different campuses (UT 

Austin, University of Houston, University of North Texas, UT Dallas, UT Arlington, and UT Tyler) to assess 

whether different UTeach sites produce teachers of varying effectiveness: 

𝑦𝑖𝑠𝑡 = 𝛽0 + 𝛽1𝑦𝑖𝑠𝑡−1 + 𝛽2𝑋𝑖 + ∑ 𝛼𝑗
𝑗 𝐶𝑎𝑚𝑝𝑢𝑠𝑖

𝑗
+ 𝛽4𝑇𝑗 + 𝜀𝑖𝑠𝑡  , (4) 

In Equation (4) above, 𝛼𝑗 represents the coefficient estimate for each separate UTeach campus j and 

measuring the average difference between campus j and the average non-UTeach teacher. Variation in 

the 𝛼𝑗 coefficients would indicate the extent to which graduates of different UTeach sites are 

differentially effective. It could be the case, for example, that graduates trained at the founding site, UT 

Austin, are more effective than graduates from the replication sites as a result of higher implementation 

fidelity (as the founding site) or because UT Austin is the most selective of the UTeach campuses. We 

test for this explicitly by grouping UTeach schools into Austin and replication (non-Austin) campuses.23 

An important question is the extent to which UTeach effects are driven by the UTeach program 

itself rather than general institution or selectivity effects. For example, as of 2014, 41% of UTeach 

graduates nationwide were trained at UT Austin, ranked as a “highly competitive” university in Barron’s 

Profiles of American Colleges.24 In their study of Teach for America (TFA), a selective teacher training 

program, Xu et al. (2011) found that a substantial portion of the greater effectiveness of TFA instructors 

relative to other teachers can be explained by TFA’s selection of candidates with better observable 

characteristics, such as graduating from a more selective university and having higher licensure test 

(Praxis) scores. Thus, one may expect UTeach teachers from UT Austin to be the most effective, given 

                                                 
23 In practice, there are not enough observations for each campus to obtain informative estimates for individual 

campuses based on Equation (2), so we group UTeach campuses into Austin and replication (non-Austin) sites for 

most of the analyses described below. 
24

 UTeach program data: “UTeach and UTeach Expansion” from uteach-institute.org. 
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that UT Austin is more selective than the other UTeach campuses. We thus perform a series of tests to 

investigate the question of program versus institution effects. First, we investigate whether selectivity 

can explain the UTeach effect by exploring the sensitivity of results to the addition of selectivity 

measures at the campus (SAT scores of incoming freshman students) and teacher (licensure scores) 

levels. Second, for replication sites, we compare the relative performance of UTeach graduates to those 

who graduated from those same institutions prior to the introduction of UTeach to see if the 

introduction of UTeach was associated with an increase in the performance of graduates from a given 

replication site. 

 

V. Results 

 Before displaying our estimates of UTeach effectiveness, we first note two ancillary findings that 

place our UTeach estimates in context. First, we estimate the dispersion of teacher effects by subject – 

sometimes referred to as the teacher “effect size” – by estimating models with teacher fixed effects and 

shrinking these estimates using an Empirical Bayes procedure. The standard deviations for these teacher 

fixed effects for each subject are as follows: EOG math 0.22, EOC math 0.44, EOC science 0.29, EOG 

reading 0.14, and EOC reading 0.27, with the results for the math and science subjects here being 

consistent with Goldhaber et al.’s (2016) estimates from the state of Washington. Second, using Lipsey 

et al.’s (2012) estimates of annual learning by subject and grade, taking the most conservative (i.e., 

largest standard deviation) estimates for translating test score gains to months of learning, the average 

student gains 0.32 standard deviations per year in middle school math, 0.25 standard deviations per 

year in high school math, and 0.22 standard deviations per year in high school science.25 

 

                                                 
25 In all months of learning calculations, we use a 9 month school year. 
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A.  Baseline Findings 

(i) UTeach Estimates 

We begin by displaying the results of our basic estimating equation for math subjects in Table 5. 

Each math test—EOG math, Algebra I, Algebra II, and Geometry—is used as an outcome variable in four 

specifications, with each column representing the results from a different specification.26 The first three 

columns show results with no fixed effects but different choices for controls, and the last column 

contains school fixed effects. Results are mostly consistent across the different tests: without fixed 

effects, the typical student in a UTeach classroom scores 0.05-0.13 standard deviations higher, 

depending on the subject and model.  

When adding fixed effects, there is a reduction in effect size from 0.05-0.13 to 0.01-0.14 

standard deviations. Without Algebra II, which has the smallest sample size of UTeach teachers, the 

fixed effects range is 0.01-0.08. As we discuss in greater detail below, is possible that the shrinkage of 

the UTeach effect size when adding school fixed effects (whether at the school level or school-track 

level) is due to teachers of similar effectiveness sorting into the same schools (e.g., Goldhaber et al., 

2013). This is the opposite of the result sometimes observed in TFA evaluations, in which the TFA effect 

increases with school fixed effects because the comparison teachers in the disadvantaged schools where 

TFA corps members are placed tend to be below average (e.g., Hansen et al., 2015). 

 We display the same models for the science subjects (Biology, Chemistry, and Physics) in Table 6 

with similar results, albeit consistently larger in the models without school fixed effects. Although the 

ordinary least squares (OLS) results for Physics in Table 6 are very large, this constitutes a small share of 

the sample, and this reflected by the large standard errors.  

                                                 
26 Appendix Table 1 shows selected coefficient estimates from column 2 of the three most common subjects: EOG 

math, Algebra I, and Biology. For the sake of space we do not report the coefficients in the main tables of the paper. 
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 The effect sizes shown in Tables 5 and 6 are large relative to the returns to teacher experience 

and to how much a typical student learns in a year. In EOG math, column 2’s 0.10 standard deviations is 

similar to the difference between a teacher with 0 years of experience and one with 7 years of 

experience (see Appendix Table 1). In a 9 month school year, 0.10 standard deviations translates to 2.8 

months of additional learning. For Algebra I and Biology, the UTeach effect is larger than the difference 

between teachers with more than 10 years of experience and teachers with 0 years of experience and is 

equivalent to 4.7 months of learning in math and 3.7 months in science. Although our estimates of 

returns to experience may appear small (0.06 for teachers with more than 10 years of experience in 

Algebra I and 0.05 in Biology), they are not substantially different than other estimates of the returns to 

experience using teachers in high school subjects (e.g., Clotfelter et al., 2010, Xu et al., 2011).  

 

(ii) Investigating the Differences Between the OLS and School Fixed Effect Models 

The results in Tables 5–6 indicate that the decision whether to include school fixed effects leads 

to meaningful differences in the magnitudes and statistical significance of the estimates in some 

subjects. In models without school fixed effects—thus comparing UTeach graduates to all other STEM 

teachers of a given tested subject in the state—UTeach teachers perform better than the average non-

UTeach teacher in all subjects. However, when comparing UTeach graduates to other STEM teachers in 

the same subjects in the same schools, the estimates for many subjects are attenuated and lose 

statistical significance.  

As discussed in Goldhaber et al. (2013), it is not obvious which set of results should be 

privileged. On one hand, the fixed effects model is theoretically attractive because it removes potential 

time-invariant biasing factors such as principal quality, curriculum, or teacher collegiality. On the other 

hand, if UTeach graduates sort into schools where both UTeach and comparison teachers are truly more 
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effective, then the addition of school fixed effects obscures the true effectiveness of UTeach teachers by 

restricting the comparison group to teachers who are more effective than average.  

Our basic results in Tables 5 and 6 show that even with school fixed effects, UTeach is estimated 

to be more effective in all subjects except for Algebra I and Biology (although not always statistically 

significant in all subjects). In addition, as we will show below, EOC science results are positive and 

statistically significant for Austin graduates and not statistically significant for replication site graduates 

whether or not fixed effects are included. Thus, understanding why our estimates are sensitive to the 

inclusion of school fixed effects is most important in Algebra I, especially because this is the subject with 

by far the greatest number of UTeach teachers.  

We conduct two additional analyses to investigate whether the sensitivity of the estimates may 

be related to the sorting of teachers into schools employing UTeach teachers. First, we measure the 

certification scores of the comparison teachers in UTeach schools; and second, we examine the 

performance of students assigned to the comparison teachers in the years in which comparison teachers 

were not teaching in UTeach schools. As we describe below, we believe these tend to support idea that 

the UTeach fixed effects estimates are attenuated due to comparison teachers being more effective, 

especially in Algebra I. 

The first test measures the certification scores of students’ teachers, which are positively 

correlated with student achievement in math and science both in our data and in other settings (see, 

e.g., Clotfelter et al., 2010, and Goldhaber et al., 2016). In Panel 1, we provide measures showing the 

degree to which a student being a UTeach school in a given subject is associated with being taught by 

teachers with higher or lower certification scores, conditional on student background and prior 

achievement (because it is the comparison teachers in UTeach schools that are of interest, these 

regressions omit UTeach teachers). Panel 1 shows that UTeach schools are more likely to contain 

students taught by comparison teachers with substantially higher certification scores. In the high school 
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subjects, these estimates range from 0.07 standard deviations in Algebra II to 0.16 standard deviations 

in Geometry. In Algebra I and Biology, the two subjects with the largest UTeach sample sizes that are the 

most sensitive to the inclusion of school fixed effects, the UTeach school coefficients are statistically 

significant and about 0.10 standard deviations higher, suggesting that the attenuation of UTeach 

coefficients with the addition of school fixed effects being driven by stronger within-school comparison 

teachers is plausible. 

The second test investigates the performance of UTeach comparison teachers in the years in 

which they taught outside of UTeach schools. It is important to look at these teachers outside of UTeach 

schools because otherwise we have the same fundamental problem of measuring teacher versus school 

effects that we have with UTeach teachers, where we cannot disentangle school effects from teacher 

effects. If it were the case that the comparison teachers in UTeach schools are truly more effective, we 

would expect that, among non-UTeach teachers who taught in both UTeach and non-UTeach schools, 

they would also be more effective in non-UTeach schools. Because the coefficient of interest is 

identified based on teachers who taught in multiple schools (i.e., both UTeach and non-UTeach schools), 

we display results for the three subjects where we observe more than two years of data: EOG math, 

Algebra I, and Biology. Panel 2 of Appendix Table 2 shows the results from estimating Equation (3), a 

regression of student achievement on an indicator for whether a teacher ever taught at a UTeach 

school, in a sample restricted to non-UTeach schools, controlling for students’ demographic information 

and prior test scores. The results indicate that being taught by a teacher who would at one point be 

present in a UTeach school predicts in increase of student learning in Algebra I. While there is no 

difference in EOG math or Biology, our results are not sensitive to the inclusion of school fixed effects in 

EOG math.  

Finally, given the findings from the teacher value added literature, it would be surprising if the 

UTeach effects we observe were driven entirely by the schools in which they teach rather than the 
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underlying ability of teachers. The value added literature is relevant because the UTeach estimates in 

the paper are essentially what would be obtained if we obtained individual estimates for the value 

added of every UTeach teacher by estimating teacher fixed effects and averaging them together, 

weighted by the number of students they taught. A number of different papers (e.g., Chetty et al., 2014; 

Xu et al., 2012) show that the achievement of the students taught by teachers who are entering a new 

school can be predicted by the achievement of the students taught by those teachers in their prior 

schools, even when switching between schools with substantially different poverty or achievement 

levels. An important caveat here, however, is that these results have largely been obtained from 

students in grades 4-8, while in our setting it is the end of course results that are most sensitive to the 

inclusion of school fixed effects. 

In the remainder of this paper, we display estimates both with and without fixed effects in the 

interest of transparency but largely focus the discussion on the models without fixed effects due to the 

potential problems with fixed effects models noted above. 

 

B. Accounting for Teacher Characteristics  

 The first three columns of Tables 5 and 6 control for different teacher characteristics. Column 1 

includes no teacher characteristics. Column 2 adds teacher experience. In all seven tests used as 

outcomes, including teacher experience increases the magnitude of the UTeach estimate. This is not 

surprising because UTeach teachers have less experience on average than other teachers, so accounting 

for this experience differential makes UTeach performance look relatively stronger. 

One potential explanation for the effectiveness of UTeach teachers relative to comparison 

teachers is that all UTeach teachers are STEM-certified, while about one third of EOG teachers and 5 to 

10 percent of EOC teachers are either certified in a non-STEM-specific field or absent from the state’s 

certification database. Although the literature presents mixed evidence about the relationship between 
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certification and student achievement (e.g., Rockoff, Jacob, Kane, & Staiger, 2011), we nevertheless 

explore how the addition of control for STEM certification would affect our UTeach estimates. Results 

are shown in column 3 of Tables 5 and 6. Interestingly, the STEM certification coefficients for Algebra I 

and Geometry in column 3 (0.36 and 0.25, respectively; not shown but available from authors) is larger 

than the corresponding result for Algebra and Geometry teachers in North Carolina (0.13) from 

Clotfelter et al. (2010), but the association between Biology score and STEM certification in our study 

(0.04) is similar to Clotfelter et al. (2010)’s result (0.03).27 Returning to UTeach estimates, relative to 

columns 1 and 2 of Tables 5 and 6, the coefficients for UTeach in all math aside from Algebra II are 

modestly attenuated when including STEM certification as a control. However, even with these controls, 

the coefficients remain statistically significant and positive. For EOC science, because only 5% of non-

UTeach teachers are missing a STEM credential in our data, adding controls for STEM certification does 

not affect the UTeach coefficient. Thus, providing a guided route to certification may explain a small 

portion of the effectiveness of UTeach in math classrooms but UTeach teachers remain more effective 

than the average teacher in Texas even after accounting for STEM certification. 

 

C. Results for Austin vs. UTeach Replication Sites 

Next, we present separate results for the two types of UTeach campuses: the original site at 

Austin and all other replication sites at universities in Texas, as shown in Table 7. Because the results 

from Tables 5 and 6 are generally consistent across EOC tests within the same subject for the subjects 

where most students are concentrated, for the remainder of the results section we group results into 

                                                 
27 We do not show the coefficients in the tables for sake of brevity. They are as follows: EOG M 0.04, Algebra I 

0.36, Geometry 0.25, Algebra II 0.13, Biology 0.04, Chemistry 0.15, Physics 0.04. Note that some of these 

coefficients have changed from an earlier version of the paper where certification status was missing for a greater 

share of teachers due to incomplete data, resulting in artificially low STEM certification rates. 
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the three categories used in the summary statistics tables: EOG math, EOC math, and EOC science.28 For 

EOC math, observations largely come from Algebra I (75% of observations), whereas for EOC science, 

Biology (80%) makes up the bulk of observations.  

The results in Table 7 indicate that achievement gains associated with UTeach classrooms are 

similar for Austin and replication site graduates in math (panels 1 and 2) but that Austin graduates are 

substantially more effective in science (panel 3). In column 2, The EOC math achievement boost is 

estimated to be 11% of a standard deviation for Austin graduates (4.0 months of additional learning) 

and 14% for replication site graduates (5.0 months). The difference between Austin and replication site 

graduates in EOG math and EOC math is not statistically significant in any model that controls for 

teacher experience. In science, however, the estimated achievement gain for students of Austin UTeach 

graduates is 13% of a standard deviation (5.3 months) without school fixed effects or controls for STEM 

certification (column 2) and 4% with school fixed effects (column 4). For the non-Austin replication sites, 

the corresponding gains are 4% in EOC science (1.6 months) without fixed effects, and below zero with 

fixed effects, with neither being statistically significant. When disaggregating non-Austin sites by 

campus, shown in Appendix Table 3, standard errors become too large to be confident in the findings for 

most sites, although many point estimates for UT Dallas and Houston are very large and positive. 

 

D. Robustness Tests and Other Checks 

In Table 8, we display the results from a series of robustness checks, with rows 1 and 2 showing 

our main results from Table 7 for comparison. Row 3 replaces school fixed effects with school-track fixed 

                                                 
28 In these specifications, we interact coefficients by test type to allow their association with the outcome to vary by 

test type. For example, in Table 5, in results not shown, prior math scores are differentially predictive depending on 

the outcome test under examination. 
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effects (Jackson, 2014).29 Results indicate that the choice between school fixed effects (row 2) and 

school-track fixed effects (row 3) makes almost no difference for the high school subjects where tracking 

is the strongest concern, although the replication site EOG math results are substantially attenuated.  

In rows 4 and 5, we add school characteristics (row 4) and school plus class characteristics (row 

5) to the basic OLS model.30 Relative to row 1, this results in some attenuation; however, the results are 

qualitatively similar in that UTeach teachers are still seen to be more effective. As discussed in 

Goldhaber et al. (2018), it is difficult to know whether the attenuation when classroom controls are 

added is due removing true differences across classrooms by over-controlling for the influence of peer 

effects or if the attenuation reflects less biased estimates. 

In rows 5 and 6, we restrict our sample to schools that do not appear to track by ability grouping 

(about 80% of schools),31 UTeach coefficient estimates are smaller for Austin graduates teaching EOC 

math (0.06 without school fixed effects) but similar for Austin graduates teaching EOC science and for 

replication site graduates in all subjects. 

To this point, our sample has included all teachers regardless of the amount of time elapsed 

since they completed their training. If it were the case that TPP effects are strongest for teachers who 

recently graduated and entered the workforce and that they dissipate as time elapses, as found in 

Goldhaber et al. (2013), one would expect the UTeach effects estimated above to be an attenuated 

version of what might be found on a sample of novice teachers. In rows 8 and 9, we run our basic 

models on a sample of teachers in their first, second, or third year of teaching. Three of the four EOC 

coefficients are larger when the sample is restricted to novice teachers, but the coefficients are smaller 

                                                 
29 Depending on the subject, 10-20% of school-tracks with UTeach have no variation in UTeach (i.e., the only 

students in that track are exclusively taught by UTeach in that subject), meaning that these school-tracks no longer 

contribute to our UTeach estimates. 
30 Specifically, these include cubic polynomials of school and/or class averages of percent black, percent Hispanic, 

and prior math and reading scores. 
31 Specifically, we retain a sample of schools where the average deviation in prior math test scores at the classroom 

level from the overall school average is less than 0.05 standard deviations. 
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for EOG math. For example, for EOC math, the coefficient increases from 0.11 to 0.13 for Austin and 

0.14 to 0.15 for replication sites after the sample restriction. This pattern is consistent with TPP effects 

being most pronounced for teachers who have recently completed their training for teachers in 

advanced subjects. 

Rows 10 and 11 perform a robustness check in which we drop the first cohort from each UTeach 

site. If it were the case that some graduates of a university’s pre-UTeach program were still finishing 

their program in the early stages of UTeach, dropping the first cohort would avoid misclassifying these 

teachers as UTeach. Results are broadly similar. 

To sum up Table 8, EOG math results are always positive but rarely significant for Austin and 

replication sites, EOC math results are positive and significant for nearly all models that do not include 

fixed effects for Austin and replication sites, and EOC science results are always positive and significant 

for Austin but have mixed sign and no significance for replication sites. 

 

E. Exploring Heterogeneity Across UTeach Sites  

In this section, we investigate potential explanations for why the observed achievement gains 

associated with being in a UTeach classroom are stronger for the Austin graduates in science than for 

graduates from the replication sites. We run through three potential explanations that could plausibly 

explain the Austin-replication site differential. First, we investigate institution-level selectivity measures 

(SAT scores of incoming students); second, we test individual-level ability measures (teacher 

certification scores); third, we investigate whether the Austin effect is driven by its program having been 

in place longer by looking for evidence of the replication sites improving over time. Before proceeding, 

we emphasize that we cannot cleanly distinguish selection effects from training effects. Thus, when we 

measure an “Austin effect,” we are measuring the result of the combined process of the sorting of 

students into Austin, the sorting of Austin students into training, and the training itself. 
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The first two potential explanations pertain to selection. We experiment with two ways of 

accounting for selection and then discuss them together. First we control for the selectivity of the 

undergraduate institution attended, as measured by the 75th percentile of math and reading SAT scores 

of incoming freshmen. Specifically, we add dummy variables for each selectivity quintile for both math 

and reading SAT scores to allow for potential nonlinearities between selectivity and effectiveness, with 

an additional dummy indicating missing scores (either because the undergraduate institution does not 

require SAT scores for admission or because we cannot identify in the state database which institution a 

teacher attended).32 Although SAT scores are only one dimension by which students are selected into 

college, they are nevertheless useful for sorting colleges into broad selectivity tiers (Hoxby, 2009).  

Results are shown in Table 9. The first two columns re-produce our main results from Table 7. 

Columns (3) and (4) show results controlling for undergraduate institution selectivity, with the 

coefficients for Austin less positive in all models but remaining statistically significant in all models 

where fixed effects are not included (with EOG math only significant at the 10% level).  

As a second way to account for selectivity, we add controls for teacher licensure scores in STEM 

subjects as a measure of individual aptitude.33 Specifically, we record each teacher’s first score on a 

STEM certification exam and standardize these scores to have mean 0, standard deviation 1 within each 

subject–year combination and include a cubic function of these scores as an additional control. Results 

are shown in columns (5) and (6) of Table 9. Relative to our main estimates, coefficients are again 

attenuated, but even though Austin graduates score substantially above average on certification exams, 

                                                 
32 We experimented with breaking the selectivity groups into finer groupings (e.g., deciles rather than quintiles) but 

heaping at certain SAT score cutoffs makes creating these smaller groups of equal sizes difficult. 
33 For math teachers, the standardized (mean 0, standard deviation 1) scores are 0.83 for Austin, 0.53 for replication 

sites, and 0.07 for non-UTeach teachers. For science, the corresponding scores are 0.81 for Austin, 0.50 for 

replication sites, and 0.08 for non-UTeach. Overall mean scores are not zero because the standardization process 

happens before linking to students, so if teachers who score poorly are less likely to enter or persist in teaching, then 

the analysis sample will have teachers who score above average. This is the same standardization procedure 

followed by Clotfelter et al. (2010). 
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estimates of their effectiveness are large even after controlling for certification scores, especially in 

science.  

To probe whether UT Austin graduates’ effectiveness can be fully explained by all observable 

characteristics in our data, we include undergraduate institution selectivity scores, certification scores, 

and additional controls for certification route. Specifically, we include separate dummy variables for 

whether a teacher obtained a certification through an alternate route and for whether a teacher is 

missing in the certification database, as well as an indicator for whether a teacher is STEM certified. 

Results are shown in Columns (7) and (8), with the UTeach coefficients representing UTeach estimates 

relative to other teachers who come from standard university-based programs, with similar certification 

scores, of programs with similar selectivity. With controls for all of these explanatory factors, students of 

Austin and replication site graduates are estimated to score higher in all subjects, except for replication 

site graduates in EOC science, by at least 0.05 standard deviations. However, while these effect sizes are 

still meaningful, they are only statistically significant for replication site graduates in EOC math and 

Austin graduates in EOC science.34 

 

E. Further Exploring Program vs. Institution Effects  

In this section, we investigate two additional pieces of evidence in an effort to separate whether 

the effectiveness of UTeach graduates is due to the UTeach program itself or the fact that UTeach 

teachers are coming from a select set of TEP institutions. Specifically, for replication sites, we compare 

the relative performance of UTeach graduates to graduates of the same institutions before UTeach was 

                                                 
34 Another possible reason the estimated effectiveness of Austin graduates might be higher in science than other 

sites’ is that the Austin program has existed for substantially longer. Thus, it is possible that, once other programs 

have been in place as long as Austin’s, they too will be similarly strong. To investigate whether the other programs 

show evidence of improving over time, we experimented with program * year interaction terms. Unfortunately, the 

coefficients for the interaction terms had very large standard errors. 
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founded. In addition, we estimate the performance of non-UTeach (i.e., non-STEM) graduates of 

UTeach-affiliated institutions. 

We first estimate the effectiveness of STEM teachers who graduated from UTeach replication 

sites before UTeach was adopted by those sites; unfortunately, we are not able to do the same for 

Austin graduates prior to UTeach because UTeach has been at Austin for more than 20 years. 

Specifically, we estimate the coefficients of indicators for whether a teacher graduated from UTeach 

Austin, from UTeach at a replication site after UTeach was introduced, or from a replication site in the 

period before UTeach was introduced. Thus, we are comparing the effectiveness of these three groups 

to average effectiveness of all other teachers in the state.35 Results are shown in Table 10.  

The “Replication Pre” coefficients measure the average effectiveness of STEM teachers who 

graduated from UTeach institutions prior to the adoption of UTeach relative to teachers from non-

UTeach institutions. These estimates range from -0.04 in EOC science to 0.07 in EOC math. Thus, there is 

some evidence of graduates of replication site institutions being more effective in EOC math, even 

before UTeach was implemented. However, a comparison of the “Replication Post” to the “Replication 

Pre” coefficients reveals that replication site UTeach graduates who went through the UTeach program 

(“Replication Post”) are estimated to be consistently more effective than other STEM teachers who 

graduated from the same institutions before UTeach was implemented (“Replication Pre”). In all 

subjects in all models without fixed effects, the pre-UTeach replication site graduates were less effective 

at raising the test scores of their students than the subsequent UTeach graduates would be by 0.07 to 

0.08 standard deviations, although this difference is only statistically significant in some subjects and 

models. In EOC science, for example, where the replication site coefficient in our main models is not 

statistically different from zero, the results in Table 10 are suggestive of a large increase in effectiveness 

                                                 
35 The coefficients for pre-UTeach replication site graduates are identical when not including any UTeach graduates 

in the regression.  
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once UTeach was adopted at replication site institutions (from -0.04 to 0.04 standard deviations). This 

pattern would be consistent with the introduction of UTeach at a campus improving the average quality 

of STEM teachers who graduate from that university. 

As an additional test, we replicate Table 10 on a sample of non-STEM (i.e., non-UTeach) teachers 

from UTeach-affiliated universities. These are teachers who did not earn STEM credentials and are 

teaching in non-STEM fields. If the improvement in teacher quality at UTeach replication sites associated 

with the introduction of UTeach in Table 10 were driven by general university-specific trends rather than 

UTeach itself, one might expect these non-STEM teachers who have graduated from these UTeach-

affiliated institutions in the time since UTeach was introduced (“Non-STEM Replication Post”) to be 

larger than the pre-UTeach graduates (“Non-STEM Replication Pre”). Results are shown in Table 11. For 

EOG reading performance of the replication site graduates, where non-STEM graduates are not part of 

the UTeach program at any campus, we do not see evidence that teachers who graduated from 

replication sites are more effective in the time period during which UTeach has been operating. Thus, 

while there is some improvement in EOC reading in the replication sites after the introduction of UTeach 

in some models, it is not the case that non-STEM teachers at replication sites were uniformly better 

across all subjects in the more recent UTeach period. 

Turning to the Austin coefficient for non-STEM teachers in Table 11, relative to our main results 

for STEM teachers in Table 7, some of the patterns are broadly similar, with Austin graduates being 

stronger than other teachers in the state, especially for the more advanced EOC subjects. 36 However, 

the interpretation of STEM vs. non-STEM results at Austin is complicated by Austin housing the only 

non-STEM UTeach site: UTeach-Liberal Arts at UT Austin.37 Thus, Austin is the only campus where a 

comparison of STEM to non-STEM teachers is not a clean UTeach versus non-UTeach comparison.  

                                                 
36 As with Table 10, we do not estimate pre-UTeach Austin because of the length of time that UTeach has been at 

Austin. 
37 For more information, see https://liberalarts.utexas.edu/uteach/. 

https://liberalarts.utexas.edu/uteach/
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F. Exploring Teacher–Student and Teacher–Class Match Effects 

The website for the UTeach site at Austin touts its approach to diversity, in both its training38 

and in producing a more diverse set of teachers than other programs.39 To investigate whether UTeach 

graduates are differentially effective at teaching minority students, we include interaction terms 

between UTeach and student demographics. Results are not shown (for the sake of brevity) but there 

are few clear patterns with the exception of black students appearing to perform relatively worse when 

taught by Austin UTeach graduates and FRL-eligible students performing better when taught by 

replication site graduates.40 To explore weather UTeach teachers are differentially effective at teaching 

high-ability classrooms, we compare UTeach teachers in the top 20% of classrooms (as defined by prior 

math scores) to other teachers in top classrooms. In results available from the authors, we find that 

students in these high-ability classrooms disproportionately benefit from having either an Austin or 

UTeach replication site graduate in EOC math subjects, with point estimates on the order of 0.17–0.47, 

although standard errors are large in some cases. 

  

VI. Conclusion 

 Relative to other teachers in the state, we find that graduates of both the UTeach founding site 

at Austin and the replication sites are more effective as measured by their ability to raise student test 

scores in math. In science, we find that Austin graduates improve the test scores of their students, while 

                                                 
38 https://institute.uteach.utexas.edu/sessions/three-university-perspectives-weaving-equity-diversity-and-current-

issues-classroom 
39http://www.sheeo.org/sites/default/files/Weds%201115%20Marcus%20Lingenfelter%202013UTeachGradReportF

inal120204.pdf 
40 When interacting UTeach with school characteristics, we find suggestive evidence that increases in the school 

share of black students is associated with reductions in the effectiveness of Austin grads, but these estimates are very 

imprecise. These results are available from the authors upon request.  
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estimates for replication sites are smaller and not statistically significant. In some cases, these effect 

sizes are very large, with high school math and science students taught by UTeach Austin graduates 

estimated to accrue 4-6 months of additional learning in a 9 month school year. We conduct several 

tests to assess whether the positive UTeach effects we find might be driven by overall university-level 

effects such as the selection of students to universities rather than UTeach program effects. While it is 

difficult to definitively distinguish between true program effects and general institution-level effects, 

these tests suggest that the introduction of UTeach to a given university is associated with an increase in 

the performance of the STEM teachers produced by that university. In addition, the inclusion of proxies 

for selectivity such as the SAT scores of incoming students cannot fully explain the UTeach effects we 

find. 

 While our tests are suggestive of true UTeach program effects, there are several reasons that 

the findings in this paper are still important even if fully driven by institution effects. First, a primary goal 

of UTeach is to increase the production of STEM teachers from partner universities. While not the focus 

of the paper, we find evidence that UTeach partner universities do produce more STEM teachers after 

the implementation of UTeach. Thus, even if the UTeach program itself does not improve the quality of 

a given teacher candidate, by producing more teachers from universities with above average teachers, 

the program would still improve the overall quality of the STEM workforce. Second, our results suggest 

that whether a teacher candidate graduated from a UTeach program is a signal of an applicant’s quality. 

While distinguishing university selection effects from training effects is important for policymakers who 

operate at the state and university levels, for leaders of secondary schools interested in the learning of 

their students, the question of whether graduates of a given university are more effective because of 

the selection process into the university or because of the training received at that university is not 

particularly relevant. Finally, UTeach offers a 4 year degree plan that condenses the certification courses 

that were offered in the previous programs at UTeach-affiliated institutions prior to UTeach 
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implementation. Our results suggest that condensing these courses has not resulted in detrimental 

performance once teachers enter the classroom. 
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Tables 

 

Table 1: Number of UTeach Teachers by Campus and Sample Year 

 EOG M  EOC M  EOC S  

 2012 2013 2014 2015 2016 2012 2013 2014 2015 2016 2012 2013 2014 2015 2016 

Arlington 0 0 0 0 ≤5 0 0 0 9 26 0 0 0 8 14 

Austin 17 16 14 17 18 115 131 113 114 120 80 97 75 88 82 

Dallas 0 0 0 ≤5 ≤5 ≤5 ≤5 12 17 20 0 ≤5 10 14 21 

Houston ≤5 ≤5 ≤5 7 6 12 24 28 43 51 ≤5 14 23 32 43 

UNT ≤5 ≤5 ≤5 ≤5 11 12 38 56 68 80 ≤5 6 8 18 25 

Rio 

Grande 

0 0 0 11 22 0 0 0 10 23 0 0 0 ≤5 16 

Tyler 0 0 ≤5 18 28 0 0 ≤5 8 13 0 0 0 0 ≤5 

Notes: Cell values indicate the number of unique teachers linked to students with valid test scores. “EOG M” denotes 

teachers of EOG math (Grades 6–8), “EOC M” teachers of EOC math (Algebra I, Geometry, and Algebra II), and “EOC 

S” denotes teachers of EOC science (Biology, Chemistry, and Physics). 

 

 

 

Table 2: Number of Teachers in Analysis Sample by Campus and Graduation Year 

 Arlington Austin Dallas Houston Rio Grande Tyler UNT 

1995 17 9 13 17 63 13 20 

1996 25 12 14 15 62 7 15 

1997 13 10 6 11 53 7 20 

1998 12 7 13 14 55 ≤5 14 

1999 8 8 13 12 60 5 22 

2000 14 9 5 11 40 8 20 

2001 6 18 11 14 49 11 23 

2002 5 14 7 7 54 13 15 

2003 6 15 ≤5 8 43 6 7 

2004 6 16 ≤5 ≤5 42 11 12 

2005 9 33 7 12 45 5 18 

2006 8 25 9 13 39 10 18 

2007 5 26 8 10 49 7 19 

2008 6 43 ≤5 5 38 7 19 

2009 10 40 5 5 39 10 13 

2010 11 27 ≤5 10 47 10 30 

2011 19 47 8 11 39 10 29 

2012 ≤5 43 11 27 32 23 38 

2013 8 37 13 27 25 21 33 

2014 26 40 16 36 42 18 30 

2015 27 28 9 22 24 13 24 

Notes: Each cell denotes the number of STEM teachers in our analysis sample who graduated from a given campus in a 

given calendar year. Numbers below horizontal lines represent teachers who graduated after UTeach had been 

implemented at a given campus. 
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Table 3: Summary Statistics of Students Taught by UTeach and Non-UTeach Teachers 

 EOG M  EOC M  EOC S 

 Non-U Austin Replication Non-U Austin Replication Non-U Austin Replication 

Male 0.51 0.47 0.50 0.50 0.51 0.50 0.49 0.50 0.50 

Black 0.11 0.10 0.10 0.12 0.12 0.16 0.12 0.11 0.16 

Hispanic 0.52 0.36 0.61 0.48 0.50 0.52 0.48 0.42 0.55 

Asian 0.03 0.09 0.04 0.04 0.06 0.05 0.04 0.06 0.05 

White 0.31 0.42 0.23 0.32 0.29 0.23 0.32 0.38 0.20 

Other 0.02 0.03 0.00 0.02 0.02 0.02 0.02 0.03 0.02 

LEP 0.16 0.08 0.24 0.09 0.12 0.16 0.09 0.09 0.17 

FRL 0.58 0.38 0.67 0.51 0.50 0.58 0.51 0.41 0.58 

Spec Ed 0.05 0.03 0.04 0.05 0.04 0.05 0.04 0.04 0.04 

Gifted 0.09 0.15 0.11 0.12 0.11 0.07 0.11 0.13 0.08 

Grade 6.93 7.48 7.20 8.99 9.13 9.08 9.27 9.33 9.16 
 

(0.77) (0.69) (0.74) (0.65) (0.58) (0.47) (0.51) (0.52) (0.35) 

Lag m -0.04 0.36 -0.17 0.15 0.14 -0.05 -0.01 0.17 -0.13 
 

(0.51) (0.52) (0.48) (0.72) (0.73) (0.65) (0.51) (0.54) (0.45) 

Lag r -0.02 0.43 -0.11 0.08 0.07 -0.14 0.05 0.24 -0.15 
 

(0.46) (0.50) (0.48) (0.60) (0.62) (0.53) (0.54) (0.57) (0.51) 

Lag s       0.02 0.28 -0.10 
 

      (0.60) (0.65) (0.56) 

Miss lagm 0.04 0.04 0.04 0.05 0.05 0.05 0.06 0.06 0.06 

Miss lagr 0.04 0.04 0.03 0.06 0.06 0.06 0.07 0.07 0.06 

Miss prior s       
0.07 0.07 0.08 

Notes: “Non-U” denotes non-UTeach, “Austin” denotes the UT Austin site, and “Replication” denotes UTeach 

replication (non-Austin) sites. “EOG M” denotes teachers of EOG math (Grades 6–8), “EOC M” teachers of EOC math 

(Algebra I, Geometry, and Algebra II), and “EOC S” denotes teachers of EOC science (Biology, Chemistry, and 

Physics). Standard deviations in parentheses. 
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Table 4: Summary Statistics for Teachers 

 EOG M  EOC M   EOC S  

 Non-U Austin Replication Non-U Austin Replication Non-U Austin Replication 

Yrs exp 9.45 5.05 0.71 10.67 4.01 1.05 10.28 3.98 0.76 
 

(8.62) (3.64) (0.85) (9.37) (3.45) (1.05) (9.39) (3.16) (0.95) 

1st yr teacher 0.09 0.09 0.41 0.08 0.15 0.33 0.09 0.11 0.44 

2-3rd yr teacher 0.14 0.20 0.41 0.13 0.25 0.46 0.13 0.26 0.38 

Missing tch exp 0.03 0.04 0.15 0.03 0.06 0.11 0.03 0.07 0.12 

          
SAT 75th pct M 584 720 591 588 720 622 590 720 634 
 

(61) 
 

(36) (64) 
 

(35) (65) 
 

(41) 

SAT 75th pct R 568 690 567 571 690 601 573 690 608 
 

(57) 
 

(35) (59) 
 

(32) (59) 
 

(39) 

Missing SAT M 

scores 

0.25 0 0 0.29 0 0 0.27 0 0 

          

STEM certified 0.63 1 1 0.91 1 1 0.95 1 1 

          

Black 0.12 0.05 0.07 0.09 0.09 0.06 0.09 0.01 0.06 

Hispanic 0.20 0.34 0.35 0.20 0.33 0.31 0.19 0.16 0.27 

White 0.63 0.52 0.46 0.65 0.49 0.49 0.65 0.60 0.45 

          

Teacher-year obs 69318 82 136 60208 593 557 46450 422 269 

Notes: “Non-U” denotes non-UTeach, “Austin” denotes the UT Austin site, and “Replication” denotes UTeach 

replication (non-Austin) sites. “EOG M” denotes teachers of EOG math (Grades 6–8), “EOC M” teachers of EOC math 

(Algebra I, Geometry, and Algebra II), and “EOC S” denotes teachers of EOC science (Biology, Chemistry, and 

Physics). Standard deviations in parentheses. 
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Table 5: Coefficient Estimates of UTeach by Subject, Math 

 1 2 3 4 

Panel 1: EOG Math (unique UTeach: 134) 

UTeach 0.06 0.10** 0.08* 0.08**  
(0.04) (0.04) (0.04) (0.04) 

     

Panel 2: Algebra I (unique UTeach: 474) 

UTeach 0.12*** 0.13*** 0.12*** 0.01  
(0.03) (0.03) (0.03) (0.01) 

     

Panel 3: Geometry (unique UTeach: 164) 

UTeach 0.06* 0.08** 0.07** 0.04  
(0.04) (0.04) (0.04) (0.03) 

Panel 4: Algebra II (unique UTeach: 113) 

UTeach 0.05 0.09* 0.09* 0.14***  
(0.05) (0.05) (0.05) (0.05) 

     

Student chars X X X X 

Teacher chars  X X X 

STEM certified   X  

School fixed effect    X 

Notes: Additional controls include teacher experience, a dummy variable for missing teacher experience, 

identifiers for FRL, gifted, LEP, and special education, cubic functions of prior reading and prior match 

scores, and indicators for missing test scores. Standard errors displayed in parentheses are clustered at the 

school-cohort level. Coefficients represent effect sizes in standard deviations. 
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Table 6: Coefficient Estimates of UTeach by Subject, Science 

 1 2 3 4 

Panel 1: Biology (unique UTeach: 296) 

UTeach 0.07*** 0.09*** 0.09*** 0.01  
(0.02) (0.02) (0.02) (0.02) 

     

Panel 2: Chemistry (unique UTeach: 104) 

UTeach 0.11** 0.12*** 0.12*** 0.05*  
(0.05) (0.04) (0.04) (0.03) 

Panel 3: Physics (unique UTeach: 51) 

UTeach 0.10 0.15 0.15 0.08  
(0.09) (0.09) (0.09) (0.08) 

     

Student chars X X X X 

Teacher chars  X X X 

STEM certified   X  

School fixed effect    X 

Notes: See notes from Table 5. 
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Table 7: Coefficient Estimates for UT Austin and UTeach Replication Sites 

 1 2 3 4 

Panel 1: EOG Math   

Austin 0.12** 0.13** 0.12** 0.07*  
(0.05) (0.05) (0.05) (0.04) 

Replication 0.02 0.08 0.06 0.08 

 (0.06) (0.06) (0.06) (0.05) 

     

Panel 2: EOC Math   

Austin 0.10*** 0.11*** 0.10*** -0.00  
(0.04) (0.04) (0.04) (0.02) 

Replication 0.12*** 0.14*** 0.13*** 0.01 

 (0.03) (0.03) (0.03) (0.02) 

     

Panel 3: EOC Science   

Austin 0.13*** 0.13*** 0.13*** 0.04**  
(0.03) (0.02) (0.02) (0.02) 

Replication 0.01 0.04 0.04 -0.03 

 (0.03) (0.03) (0.03) (0.03) 

     

     

Student chars X X X X 

Teacher chars  X X X 

STEM certified   X  

School fixed effect    X 

Notes: See notes from Table 5. “EOG M” denotes teachers of EOG math (Grades 6–8), “EOC M” 

teachers of EOC math (Algebra I, Geometry, and Algebra II), and “EOC S” denotes teachers of EOC 

science (Biology, Chemistry, and Physics). 
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Table 8: Specification and robustness checks 

 EOG M EOC M EOC S 

 Austin Replication Austin Replication Austin Replication 

 1 2 3 4 5 6 

1: Main OLS results (Table 7) 0.13** 0.08 0.11*** 0.14*** 0.13*** 0.04  

 (0.05) (0.06) (0.04) (0.03) (0.02) (0.03) 

2: Main school FE results (Table 7) 0.07* 0.08 -0.00 0.01  0.04** -0.03 

 (0.04) (0.05) (0.02) (0.02) (0.02) (0.03) 

3: School-track FE 0.04 0.01 0.01 0.01  0.04*** -0.02 

 (0.03) (0.06) (0.02) (0.02) (0.02) (0.01) 

4: School characteristics controls 0.08 0.06 0.09*** 0.12*** 0.09*** 0.02  

 (0.05) (0.05) (0.04) (0.03) (0.03) (0.03) 

5: School + class chars controls 0.06 0.05 0.09*** 0.10*** 0.08*** 0.03  

 (0.05) (0.04) (0.03) (0.03) (0.02) (0.03) 

6: Schools w/o strong tracking (OLS) 0.07 0.03 0.06 0.16*** 0.14*** 0.04  

 (0.05) (0.03) (0.04) (0.04) (0.03) (0.03) 

7: Schools w/o strong tracking (FE) 0.01 0.02 -0.02 0.01  0.06*** -0.02 

 (0.03) (0.05) (0.02) (0.02) (0.02) (0.03) 

8: Novice teachers only (yrs 1-3) (OLS) 0.08 0.06 0.13*** 0.15*** 0.16*** 0.04  

 (0.07) (0.04) (0.04) (0.03) (0.04) (0.03) 

9: Novice teachers only (yrs 1-3) (FE) 0.10* 0.07 -0.01 0.02  0.07** -0.00 

 (0.05) (0.04) (0.03) (0.02) (0.03) (0.03) 

10: Excluding 1st UTeach cohort (OLS) 0.09* 0.06 0.11*** 0.15*** 0.13*** 0.03  

 (0.05) (0.03) (0.04) (0.04) (0.02) (0.03) 

11: Excluding 1st UTeach cohort (FE) 0.04 0.04* 0 0.01  0.04** -0.04 

 (0.04) (0.03) (0.02) (0.02) (0.02) (0.03) 

Notes: See notes from Table 5. “EOG M” denotes teachers of EOG math (Grades 6–8), “EOC M” teachers of EOC math 

(Algebra I, Geometry, and Algebra II), and “EOC S” denotes teachers of EOC science (Biology, Chemistry, and 

Physics). The controls used for school and class characteristics in rows 4 and 5 include cubic polynomials in percent 

black, percent Hispanic, and prior math and reading scores. In rows 6 and 7, we remove the approximately 20% of 

schools where the average deviation in prior math scores at the classroom level from the overall school average exceeds 

0.05 standard deviations. 
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Table 9: Coefficient Estimates for UTeach When Controlling for Measures of Selection 

 1 2 3 4 5 6 7 8 

Panel 1: EOG Math       

Austin 0.13** 0.07* 0.09* 0.06 0.09* 0.04 0.06 0.04 
 

(0.05) (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) 

Replication 0.08 0.08 0.10 0.08 0.05 0.05 0.07 0.06 

 (0.06) (0.05) (0.06) (0.05) (0.06) (0.05) (0.06) (0.05) 

         

Panel 2: EOC Math       

Austin 0.11*** -0.00 0.08** -0.01 0.07* -0.02 0.05 -0.03 
 

(0.04) (0.02) (0.04) (0.02) (0.04) (0.02) (0.04) (0.02) 

Replication 0.14*** 0.01 0.15*** 0.02 0.10*** -0.00 0.11*** 0.00 

 (0.03) (0.02) (0.03) (0.02) (0.03) (0.02) (0.03) (0.02) 

         

Panel 3: EOC Science       

Austin 0.13*** 0.04** 0.07*** 0.02 0.11*** 0.04* 0.06** 0.02 
 

(0.02) (0.02) (0.03) (0.02) (0.02) (0.02) (0.03) (0.02) 

Replication 0.04 -0.03 0.01 -0.04* 0.03 -0.03 -0.00 -0.04* 

 (0.03) (0.03) (0.03) (0.03) (0.03) (0.02) (0.03) (0.03) 

         

Measures of undergrad selectivity   X X   X X 

Teacher certification score     X X X X 

Certification type       X X 

School fixed effect  X  X  X  X 

Notes: See notes from Table 5. “EOG Math” denotes teachers of EOG math (Grades 6–8), “EOC Math” teachers of EOC 

math (Algebra I, Geometry, and Algebra II), and “EOC Science” denotes teachers of EOC science (Biology, Chemistry, 

and Physics). Undergraduate selectivity controls include the 75th percentile of the SAT math and reading scores of 

incoming students, certification score controls include cubic functions of a teacher’s first STEM certification score, and 

certification type controls include an indicator for STEM certified as well as whether the teacher came from an alternate 

certification route or is missing from the certification database. 
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Table 10: Coefficient Estimates for UTeach and Replication Campuses Prior to UTeach   

 EOG M EOC M EOC S 

 1 2 3 4 5 6 

Austin 0.13** 0.07* 0.11*** -0.00 0.13*** 0.04  

 (0.05) (0.04) (0.04) (0.02) (0.02) (0.02) 

       

Replication Pre 0.01 0.03*** 0.07*** 0.02 -0.04*** -0.01 

 (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) 

Replication Post 0.08 0.08 0.14*** 0.01 0.04 -0.03 

 (0.05) (0.06) (0.03) (0.02) (0.03) (0.03) 

       

School FE  X  X  X 

Notes: See notes from Table 5. “EOG M” denotes teachers of EOG math (Grades 6–8), “EOC M” 

teachers of EOC math (Algebra I, Geometry, and Algebra II), and “EOC S” denotes teachers of EOC 

science (Biology, Chemistry, and Physics). “Replication Pre” denotes teachers who were trained at 

UTeach replication site institutions prior to the implementation of UTeach and thus are not UTeach 

teachers, and “Replication Post” denotes teachers who were trained at UTeach institutions after the 

introduction of UTeach. 
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Table 11: Reading Results for non-STEM Graduates of Campuses With UTeach 

 

Notes: See notes from Table 5. In any given year, only one EOC at a given level is administered (e.g., English I or 

Reading I). “EOG R” denotes teachers of EOG reading (Grades 6_8) and “EOC R” teachers of EOC reading (Reading II, 

Reading II, English I, and English II). “Non-STEM Austin” denotes non-STEM teachers who were trained at UT Austin, 

“Non-STEM Replication Pre” denotes teachers who were trained at UTeach replication site institutions prior to the 

implementation of UTeach, and “Non-STEM Replication Post” denotes non-STEM teachers who were trained at UTeach 

institutions after the introduction of UTeach. The teachers in this table do not have STEM certificates and do not teach in 

STEM fields. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1 2 3 

Panel 1: EOG Reading 

 

Non-STEM Austin 0.03*** 0.04*** 0.01  
(0.01) (0.01) (0.01) 

Non-STEM Replication Post -0.02** -0.01 -0.02**  
(0.01) (0.01) (0.01) 

Non-STEM Replication Pre -0.01* -0.01** -0.00 

 (0.00) (0.00) (0.00) 

    

Panel 2: EOC Reading  

Non-STEM Austin 0.09*** 0.11*** 0.02* 

 (0.02) (0.02) (0.01) 

Non-STEM Replication Post 0.04** 0.07*** 0.02** 

 (0.01) (0.01) (0.01) 

Non-STEM Replication Pre 0.03*** 0.03*** 0.02*** 

 (0.01) (0.01) (0.01) 

    

Student chars X X X 

Teacher chars  X X 

Fixed effect   School 
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Appendix 

 

Appendix Table 1: Full Regression Coefficients From Most Commonly Taken Subjects 

 EOG M Algebra I Biology 

 (1) (2) (3) 

UTeach 0.10** 0.13*** 0.09*** 

 (0.04) (0.03) (0.02) 

Male 0.02*** -0.01*** 0.02*** 

 (0.00)  (0.00) (0.00) 

Black -0.12*** -0.09*** -0.07*** 

 (0.00) (0.01) (0.00) 

Hispanic -0.07*** -0.04*** -0.08*** 

 (0.00) (0.01) (0.00) 

Asian 0.36*** 0.16*** 0.25*** 

 (0.01) (0.01) (0.01) 

Other 0 0.01 0.03*** 

 (0.00) (0.01) 0.00  

Prior Math 0.69*** 0.43*** 0.14*** 

 (0.00) (0.00) (0.00) 

Prior reading 0.17*** 0.14*** 0.29*** 

 (0.00) (0.00) (0.00) 

Prior science   0.44*** 

   (0.00) 

1 year exp 0.04*** 0.07*** 0.04*** 

 0.00  (0.01) (0.01) 

2 years exp 0.07*** 0.07*** 0.06*** 

 (0.01) (0.01) (0.01) 

3 years exp 0.08*** 0.09*** 0.08*** 

 (0.01) (0.01) (0.01) 

4 years exp 0.09*** 0.09*** 0.08*** 

 (0.01) (0.01) (0.01) 

5 years exp 0.09*** 0.07*** 0.07*** 

 (0.01) (0.01) (0.01) 

6 years exp 0.09*** 0.05*** 0.07*** 

 (0.01) (0.02) (0.01) 

7 years exp 0.10*** 0.05*** 0.07*** 

 (0.01) (0.02) (0.01) 

8 years exp 0.10*** 0.08*** 0.07*** 

 (0.01) (0.02) (0.01) 

9 years exp 0.10*** 0.06*** 0.06*** 

 (0.01) (0.02) (0.01) 

10 years exp 0.11*** 0.08*** 0.08*** 
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 (0.01) (0.02) (0.01) 

Over 10 years exp 0.09*** 0.06*** 0.05*** 

 0.00  (0.01) (0.01) 

Missing exp -0.01 -0.11*** -0.04*** 

 (0.01) (0.03) (0.01) 

Student chars X X X 

Teacher chars X X X 

Notes: Additional controls include squared and cubic terms in prior test scores, limited English proficiency, FRL 

eligibility, special education status, and gifted status. Standard errors clustered at the school-cohort level. The regressions 

represented here are identical to those that generated column 2 of Tables 5 and 6. 

 

 

 

 

 

 

 

Appendix Table 2: Measures of Sorting to UTeach Schools, non-UTeach Teachers 

 EOG M Algebra I Geometry Algebra II Biology Chemistry Physics 

 1 2 3 4 5 6 7 

Panel 1: Certification score 

School UTeach 0.05*** 0.11*** 0.16*** 0.07** 0.10*** 0.14*** 0.13* 

 (0.02) (0.02) (0.04) (0.03) (0.02) (0.04) (0.07) 

        

Panel 2: Teacher ever taught in UTeach school (sample = non-UTeach schools) 

Teacher ever in  0.02 0.08***   -0.01   

UTeach school (0.01) (0.02)   (0.01)   
Notes: Panel 1 displays the results of a student-level regression where the outcome variable is a student’s 

teacher’s certification score, conditional on student demographic characteristics and prior achievement. Each 

coefficient is the estimated change associated with a student’s presence in a school that ever has a UTeach 

teacher in a given subject. Panel 2 displays a regression of student test scores on demographic characteristics, 

prior test scores, and an indicator for whether the student is being taught by a teacher who is ever observed 

teaching in a UTeach school, with the regression performed on a sample of students and teachers in the years 

they are not in UTeach schools. 
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Appendix Table 3: Program Estimates 

 EOG M EOC M EOC S 

 1 2 3 4 5 6 

Arlington 0.17 0.08 0.06 0.06 0.07 0.03  
(0.15) (0.13) (0.07) (0.07) (0.06) (0.04) 

Austin 0.13** 0.07* 0.11*** -0.00 0.13*** 0.04**  
(0.05) (0.04) (0.04) (0.02) (0.02) (0.02) 

Tyler -0.03 -0.02 -0.06 -0.09 0.13 0.25***  
(0.05) (0.04) (0.15) (0.10) (0.13) (0.03) 

Dallas -0.05*** -0.12 0.21*** 0.01 0.21* 0.08  
(0.01) (0.08) (0.05) (0.04) (0.12) (0.11) 

RioGrande -0.01 0.01 0.14 0.11 -0.07* -0.03  
(0.07) (0.06) (0.12) (0.08) (0.04) (0.04) 

UNT 0.03 0.07** 0.11*** -0.01 0.01 -0.00  
(0.04) (0.03) (0.04) (0.03) (0.03) (0.03) 

Houston 0.45* 0.36 0.21*** 0.04 0.00 -0.09***  
(0.25) (0.22) (0.06) (0.04) (0.03) (0.03) 

School FEs  x  x  X 

Notes: “EOG M” denotes teachers of EOG math (Grades 6–8), “EOC M” teachers of EOC math (Algebra I, Geometry, 

and Algebra II), and “EOC S” denotes teachers of EOC science (Biology, Chemistry, and Physics). 
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