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Abstract 

We investigate the relationship between teacher licensure test scores and student test achievement and 
high school course-taking. We focus on three subject/grade combinations—middle school math, ninth-
grade algebra and geometry, and ninth-grade biology—and find evidence that a teacher’s basic skills 
test scores are modestly predictive of student achievement in middle and high school math and highly 
predictive of student achievement in high school biology. A teacher’s subject-specific licensure test 
scores are a consistent and statistically significant predictor of student achievement only in high school 
biology. Finally, we find little evidence that students assigned to middle school teachers with higher 
basic-skills test scores are more likely to take advanced math and science courses in high school. 
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An educated, innovative, motivated workforce—human capital—is the most precious resource 
of any country in this new, flat world. Yet there is widespread concern about our K–12 science 
and mathematics education system, the foundation of that human capital in today's global 
economy (National Academies of Sciences, 2007). 

I. INTRODUCTION 

There is significant policy focus on the human capital of the nation's STEM teachers. This 

is motivated both by a desire to improve STEM outcomes for students in K–12 schools and 

college (e.g., President's Council of Advisors on Science and Technology, 2010) and by the vast 

body of empirical evidence showing the importance of teacher quality for student achievement 

(Aaronson et al., 2007; Goldhaber & Hansen, 2013; Rivkin et al., 2005).1 One way that states try 

to ensure a high-quality teacher workforce is by requiring teacher candidates to pass licensure 

tests, often of both their basic skills and content knowledge, as a requirement for receiving a 

teaching license. Although several studies (e.g., Clotfelter et al., 2007; Goldhaber & Hansen, 

2010; Goldhaber, 2007) find modest positive correlations between teacher performance on 

licensure exams and student math achievement gains in elementary grades, there is little 

evidence on whether licensure tests provide a useful “signal” of the future quality of secondary 

STEM teachers. Moreover, there is no existing evidence about whether teacher licensure test 

scores are predictive of longer-term student outcomes like course taking in STEM fields. 

In this paper we use data from Washington State to investigate whether STEM teachers 

with higher licensure test scores are also more effective at improving student outcomes. We 

focus on three subject/grade combinations—middle school (seventh–eighth grade) math, 

                                                 
1 This focus on the human capital of STEM teachers is not new. In fact, there exists an extensive body of literature 
tracking the progress that the nation is (or is not) making toward having a high-capacity STEM teacher workforce. 
Unfortunately, the indicators often used to evaluate this progress—e.g., teacher credentials and degree type—have 
not been found to be highly predictive of student achievement (e.g., Wilson et al., 2001). 
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ninth-grade algebra and geometry, and ninth-grade biology—and estimate whether a teacher’s 

score on licensure tests required to teach these subjects are predictive of student test 

achievement and high school course taking. To our knowledge this is one of the first papers to 

assess the predictive validity of teacher licensure test scores in secondary math and science 

classrooms, and the first to investigate the potential longer-term impacts of exposure to 

teachers with different licensure test scores. 

We find that basic skills licensure test scores are modestly predictive of student 

achievement in middle and high school math (though only statistically significant in middle 

school math) and highly predictive of student achievement in high school biology. The 

relationships between teacher candidate performance on subject-specific licensure test scores 

and student performance are similar in magnitude to the relationships for basic skills tests, 

though less consistently statistically significant. Finally, we find little evidence that students 

assigned to middle school math teachers with higher basic-skills test scores are more likely to 

take advanced math and science courses in high school. 

The paper proceeds as follows. In section 2, we provide background and context for this 

study. We introduce our data and discuss summary statistics in section 3, outline our analytic 

models in section 4, and describe our results in section 5. We then offer some concluding 

thoughts in section 6. 

II. BACKGROUND 

There is overwhelming policy interest in improving student outcomes in STEM fields, 

exemplified by a Report to the President (President's Council of Advisors on Science and 
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Technology, 2010) stating that “STEM education will determine whether the United States will 

remain a leader among nations and whether we will be able to solve immense challenges in 

such areas as energy, health, environmental protection, and national security” (p. v). This focus 

on STEM outcomes has in turn prompted calls to improve the quality of the nation’s STEM 

teacher workforce (e.g., White House Office of Science and Technology Policy, 2012), since 

teacher quality has repeatedly been shown to be one of the most important school-related 

influences on student achievement (Aaronson et al., 2007; Coleman et al., 1966; Rivkin et al., 

2005; Rockoff, 2004). Unfortunately, relatively few teacher credentials (like degree level or 

licensure status) appear to predict whether teachers affect student outcomes in ways that are 

detectible by student test performance (e.g. Aaronson et al., 2007; Goldhaber and Brewer, 

1997, 2000; Harris and Sass, 2011).2  

That said, there is evidence that more nuanced measures of teachers’ content 

knowledge predict student achievement. Monk and King (1994), for instance, find that the 

number of undergraduate mathematics and physical science courses a teacher takes is 

positively related with how well students perform on math and science tests, respectively. 

Goldhaber and Brewer (1997) find that teachers with Baccalaureate and Master’s degrees in 

math are more effective at improving the math performance of their students. Hill et al. (2005) 

find that a survey-based measure of teachers’ content knowledge for teaching is predictive of 

student achievement gains in first and third grades. Boyd et al. (2009) find that first-year 

                                                 
2 For instance, most studies find no relationship between generic teacher degree type (e.g., masters vs. bachelor’s) 
and student achievement in mathematics (e.g., Monk & King, 1994; Aaronson et al., 2007). 
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elementary teachers from teacher education programs that require mathematics courses are 

more effective at improving student performance math.  

One way that states try to ensure that prospective teachers have sufficient content 

knowledge for teaching is through requirements that they pass various licensure tests designed 

to assess both basic skills and subject area knowledge. Licensure tests have a long history, 

dating back to the 1930s when the first national licensure exam, the National Teacher 

Examination, was developed (Ravitch, 2003). Today all but one state require teachers to pass 

various licensure tests to participate in the public school labor market. 

Public debates about teacher licensure often center on the extent to which traditional 

licensure exams are a useful screen as opposed to an inefficient barrier to entry to the teacher 

workforce (e.g., Angrist & Guryan, 2008). Advocates argue that teacher licensure tests are an 

important quality screen needed to professionalize teaching, often comparing them to tests 

taken by lawyers and doctors before they are certified to practice (Maeroff, 1985). On the other 

side, critics often point to empirical evidence that licensure tests may negatively impact efforts 

to diversify the teacher workforce (e.g., Goldhaber & Hansen, 2010).  

Beyond their use in teacher licensing (as a “pass/fail” screen), teacher licensure test 

scores are typically not used for any additional personnel decisions (e.g., hiring or professional 

development). Indeed, test developers actively discourage the use of licensure tests for 

decisions other than licensure itself, despite the fact that teacher test scores may be predictive 

of student achievement away from the high-stakes cut-point used to determine employment 

eligibility.3 In fact, empirical evidence at the elementary level shows positive and significant 

                                                 
3 The test developer (Pearson) for the WEST-B (a basic skills test used in Washington state), for instance, states: 
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relationships between teachers' performance on some licensure exams and student test scores 

throughout the teacher test score distribution (Clotfelter et al., 2006, 2007; Goldhaber & 

Hansen, 2010; Goldhaber, 2007; Hendricks, 2014). Goldhaber (2007), for instance, analyzes 

data from North Carolina and finds that having a teacher who passed the Praxis II tests rather 

than one who failed is correlated with an increase in a student's mathematics achievement of 

about 6% of a standard deviation, and that a one standard deviation increase in a teacher’s test 

score is predictive of an increase in student mathematics achievement of about 3% of a 

standard deviation. Most recently, Hendricks (2014) documents increases in student 

achievement associated with the movement of a teacher with a high licensure score into the 

student’s grade and school. 

Most of the existing evidence about the predictive validity of licensure tests for student 

achievement is focused at the elementary level. But the relative importance of teachers' 

content knowledge may increase as teachers are expected to teach more complex material in 

higher grades (Appleton, 2013). This is supported by results in Sass (2015), who finds that 

teachers who entered Florida’s teaching workforce by passing a professional teaching 

knowledge exam and a subject area exam administered by ABCTE are more effective than the 

average teacher in the state, and that this result is strongest when the sample is restricted to 

students in grades 6-10. 

To our knowledge, Clotfelter et al. (2010) is the only existing evidence about the 

predictive validity of traditional teacher licensure test scores at the secondary level, but due to 

                                                 
“The subtest scores indicated on this report are only for the purposes of admission to state-approved teacher 
preparation programs and for teacher certification. They are NOT intended to be used for employment decisions, 
other college admissions decisions, or any other purpose.” 
http://www.west.nesinc.com/Content/Docs/WESTB_ScoreReport_backer.pdf   

http://www.west.nesinc.com/Content/Docs/WESTB_ScoreReport_backer.pdf
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data limitations, they use a very different methodology than prior work at the elementary 

level.4 Specifically, Clotfelter et al. (2010) estimate a student fixed-effects model that relies on 

within-student, cross-subject comparisons (e.g., they find that students in high school math 

classrooms score higher on a subject test relative to tests in other subjects when they have a 

teacher in that subject who has high licensure test scores relative to their teachers in other 

subjects).5 In the next section, we describe the data that will allow us to build on this existing 

work and estimate models predicting student achievement that rely on cross-student, within-

subject comparisons (e.g., do students in secondary math classrooms score higher on math 

tests, all else equal, when they have a math teacher who has higher licensure test scores than a 

math teacher with lower licensure test scores?) and produce separate estimates for different 

course levels and subjects. 

In addition to concerns about student STEM achievement, there is also considerable 

policy interest in pushing more students towards STEM pathways. As noted by the President's 

Council of Advisors on Science and Technology (2010), “It is important to note that the problem 

is not just a lack of proficiency among American students; there is also a lack of interest in STEM 

fields among many students” (p. vi). There is some survey evidence relating teacher quality to 

future student interest in STEM fields (Gross, 1988), suggesting that focusing on STEM teachers 

may be fruitful.  

                                                 
4 Sass (2015) also finds that teachers who entered Florida’s teaching workforce by passing a professional teaching 
knowledge exam and a subject area exam administered by ABCTE are more effective than the average teacher in the 
state, and this result holds when the sample is restricted to students in grades 6-10.  
5 Clotfelter et al. (2010) consider the average of a teacher’s normalized licensure test scores across all tests the 
teacher has taken. 
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The impact of teachers on future student STEM pathways could come in one of two 

forms. First, there is clear evidence that higher-achieving students are more likely to pursue 

STEM pathways (Gottfried et al., 2016), so teachers may have an indirect effect on the future 

STEM interest of their students through their impacts on student achievement. Second, there is 

a growing literature documenting that teachers have significant impacts on student non-

cognitive outcomes independent of their impacts on student achievement (e.g., Blazar & Kraft, 

2016; Gershenson, 2016; Jackson, 2012; Petek & Pope, 2016), so teachers may similarly have a 

direct effect on the future STEM interest of their students. We test each of these hypotheses in 

our investigation of the relationship between teacher licensure test scores and future student 

course taking in STEM fields. 

III. DATA AND SUMMARY STATISTICS 

III.I Data 

This study combines four databases, all maintained and supplied by the Washington 

State Office of the Superintendent of Public Instruction (OSPI), to construct one panel data set 

containing student-teacher-classroom-year observations. These databases are the Washington 

State Credentials Database, the Washington State S-275 personnel report, the Comprehensive 

Education Data and Research System (CEDARS), and the State Testing database. 

The Washington State Credentials Database contains a complete history of scores on 

the state's teacher licensure tests. In this study, we focus on two tests that have been required 

for teacher licensing in Washington State in recent years. Since 2002, prospective teachers in 

Washington have had to pass the Washington Educator Skills Test-Basic (WEST-B)—an 

assessment of basic skills in reading, writing, and mathematics—as a requirement for admission 
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into teacher education programs. The test is designed to reflect knowledge and skills described 

in textbooks, the Washington Essential Academic Learning Requirements, curriculum guides, 

and licensure standards. Because the state accepts a number of alternative tests that meet the 

WEST-B testing requirement for receiving a teaching credential,6 only 82% of new teachers 

from 2006 through 2015 have taken the WEST-B. For these individuals, we observe their scores 

on the math, reading, and writing subtests for each time they took the test. 

From 2010 to 2014, all teacher education program graduates also had to pass the 

Washington Educator Skills Test-Endorsements (WEST-E), a subject knowledge test for 

individual teaching endorsements, as a requirement for receiving a teaching credential.7 

Different WEST-E exams were required for teachers to become certified in different subject 

areas and grade levels, but every credentialed teacher had to pass at least one of these tests as 

a requirement for licensure. For this study, we focus on scores on four WEST-E tests observed 

most frequently for teachers in our sample: Mathematics, Middle Level Mathematics (MLM), 

Science, and Biology. 

The licensure exam data set is linkable to the state's S-275 database, which contains 

information from the state's personnel-reporting process. It includes a record of all certified 

employees in school districts and educational service districts (ESDs), their place(s) of 

employment, annual compensation, and demographic characteristics. The data set also 

                                                 
6 Passing scores for Praxis I, California Basic Educational Skills Test (CBEST), or the Pearson NES Essential 
Academic Skills test, as well as scores on the SAT and ACT above certain cutoffs (e.g., 515 on the math SAT) can 
be submitted as alternatives to the WEST-B exam (RCW 28A.410.220 & WAC 181-01-002). 
7 Prior to the WEST-E, the state required a passing score on the Praxis-II tests. Beginning in September 2014, the 
state replaced some WEST-E tests with assessments from the National Evaluation Series (NES). For parsimony, we 
only consider WEST-E scores in this paper. 
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includes highest degree earned and experience, which we consider as other potential 

predictors of teacher effectiveness. 

Since the 2009–10 school year, teachers can be linked to the students in their 

classrooms using a unique classroom ID in the state's CEDARS database.8 For the 2009–10 

through 2014–15 school years, the CEDARS database contains information on individual 

student background variables including gender, race/ethnicity, learning disability status, and 

free or reduced-priced lunch eligibility, as well as participation in the following programs: 

gifted/highly capable; limited English proficiency (LEP); and special education. These student-

level variables are used as control variables in all our models. From this data set, we are also 

able to create indicators for different course “tracks” (basic, average, or advanced).9 

Student test score data come from the State Testing database. The database contains 

annual student test scores on the Measures of Student Progress (MSP) exams for 2009–10 

through 2013–14 in reading (Grades 3–8), math (Grades 3–8), and science (Grades 5 and 8), as 

well as high school End-of-Course (EOC) exams in Algebra, Geometry, and Biology.10 For 2014–

15, the state transitioned to the Smarter Balance Assessment (SBA) for Grades 3–8 in both 

math and reading. Our student achievement analysis focuses on middle school math (seventh 

                                                 
8 CEDARS data includes fields designed to link students to their individual teachers, based on reported schedules. 
However, limitations of reporting standards and practices across the state may result in ambiguities or inaccuracies 
around these links.  
9 Tracks are classified by the use of course names and grade levels in the CEDARS schedule files. In middle school, 
courses in a “basic” track are courses below grade level and math courses labeled “Basic”, “Remedial”, or “LAP”. 
Courses in an “average” track are all general math courses at grade level, while courses in an “advanced” track are 
math courses above grade level or courses at or above algebra 1. In high school algebra, geometry, and biology, 
courses are considered in an “average” track unless labeled as “Honors”, “Advanced”, “Accelerated ”, or “IB”, in 
which case they are considered in an “advanced” track, or are labeled as “Basic”, “Support”, and“Remedial”, in 
which case they are considered in a “basic” track. 
10Approximately one-third of Washington state schools serving Grades 3–8 participated in a pilot of the SBA in the 
2013–2014 school year, and the state did not collect student test scores from these schools. Students from these 
schools therefore are not included in the 2013–14 data (because they are missing current-year test scores) or the 
2014–15 data (because they are missing prior-year test scores).  
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and eighth grade), ninth-grade math (algebra and geometry), and ninth-grade biology, all 

grades in which both current and same-subject prior-year test scores are available.  

The range of years we can consider varies across these different subject/year 

combinations. Because sixth through eighth grade math test scores are available for the entire 

range of years that students may be linked to teachers, 2009–10 through 2014–15, and scores 

from the predecessor to the MSP exam—the Washington Assessment of Student Learning 

(WASL)—are also available for the 2008–09 academic year (i.e., a prior-year math score for 

2009–10), we can estimate models for middle school math in all years of available CEDARS data 

(2009–10 through 2014–15). On the other hand, the Algebra and Geometry EOC exams were 

introduced in the 2010–2011 academic year, and the Biology EOC exam started in the 2011–12 

school year. Thus we can only estimate models for ninth-grade algebra and geometry for 2010–

11 through 2014–15, and for ninth-grade biology for 2011–12 and 2014–15. Across the 

different years, subjects, and tests, our analytic datasets include 204,549 student-teacher-year 

observations (156,210 unique students and 1,687 unique teachers).11  

We also use the CEDARS data to create several variables that describe student course 

taking in STEM fields in high school. First, we identify students who take at least one advanced 

math and science courses in high school by considering all math and science courses taken by 

students between ninth and twelfth grade as reported in the CEDARS data. We define high 

school courses as “advanced” following the procedure described in Gottfried (2015), which 

                                                 
11 We make a number of additional restrictions to the data set to derive these analytic datasets. Specifically, we only 
include student/teacher/year combinations in which the student has valid current and prior-year test scores, received 
instruction from a single teacher in that subject and year, and (in the case of ninth-graders) was enrolled in the 
course aligned with the EOC test we consider (Algebra, Geometry, or Biology). Likewise, for each combination of 
grade level and teacher licensure test, we only consider student/teacher/year combinations in which the teacher has 
at least one valid licensure test score. 
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relies on a taxonomy outlined in Burkham et al. (2003).12 In our primary results, advanced math 

courses include trigonometry, statistics, pre-calculus, and higher courses, while advanced 

science courses include chemistry, physics, and higher courses. We also experiment with other 

definitions of advanced courses, including the full taxonomy described in Burkham et al. (2003). 

Finally, we calculate the total number of advanced math courses and advanced science courses 

each student took over the course of their time in high school. 

III.II Summary Statistics 

The grades and subjects considered in this paper vary considerably both in terms of the 

number and characteristics of the students and teachers. Table 1 presents student-year-level 

summary statistics for each of the grade level and subject combinations considered in this 

analysis. The first column of Table 1, for example, provides summary statistics for all seventh 

and eighth-grade students in the analytic dataset whose math teacher has at least one valid 

WEST-B Math score. We standardize all student test scores within grade and year, so the means 

in column 1 of Table 1 for “Lagged Math” and “Lagged Reading” mean that students in this 

sample scored about 10% of a standard deviation higher on last year’s tests than the average 

student in the same grade and year. The other summary statistics in column 1 are broadly 

representative of the demographics of public school students in Washington state, about 50% 

of whom are eligible for free/reduced priced lunch and about 25% of whom are 

underrepresented minorities (American Indian, Black, or Hispanic). 

                                                 
12 At the high school level, courses are classified via state course codes and state course names. In cases where a 
course is not mentioned in Burkham et al. (2003) we use out best judgment to determine which level a course aligns 
with, and delete observations in schools with all missing state course names. 
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Columns 2 and 3 of Table 1 illustrate some important differences between the ninth-

grade algebra/geometry sample and the ninth-grade biology sample. Specifically, far fewer 

students in the ninth grade are enrolled in biology than in one of the ninth-grade math courses, 

and these students tend to be both more advantaged and higher performing.13 Roughly 24% of 

students take biology in 9th grade compared to about 88% of students who take algebra or 

geometry. This is likely because higher-performing students often take biology (and the biology 

EOC) in 9th grade rather than wait until 10th grade when students are required to take the 

biology EOC14. That students enrolled in different courses appear quite different from each 

other along observable dimensions suggests the need to carefully consider the implications of 

tracking (Jackson, 2014) for the estimated achievement and course-taking models described 

below. 

In Table 1 (and in the analytic models described in the next section), teacher licensure 

test scores come from the first time each teacher took the test and are standardized across all 

teacher candidates who have ever taken these tests. For example, the mean for “WEST-B 

Math” in column 1 of Table 1 implies that the average student in the WEST-B Math middle 

school sample has a teacher who scored over 50% of a standard deviation higher on their first 

WEST-B Math test than the average teacher candidate who took this test. 

Our decision to standardize licensure test scores across all years of data is important 

because, as shown in Figure 1, average scores on all three WEST-B tests have been increasing 

steadily over time. These trends could be explained by the increased availability and use of test 

                                                 
13 The most common science courses taken in 9th grade are “Physical Science” (39.9%) followed by “General 
Science” (24.2%) and then “Biology” (23.8%). The most common math courses taken in 9th grade are “Algebra” 
(61.1%), “Geometery” (28.1%), and “General Math” (15.5%).  
14 www.k12.wa.us/assessment/StateTesting/BiologyEnd-of-CourseExams.aspx 
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preparation materials, a drop in test difficulty, or an increase in the average qualifications of 

teachers. The first two explanations would suggest that we should only standardize teacher test 

scores within years (since the time trends would have nothing to do with the qualifications of 

different cohorts of teacher candidates), while the latter explanation would suggest that we 

should standardize teacher test scores across years (as the time trends would reflect 

differences in average qualifications across test cohorts). 

We test these explanations directly by estimating predictive validity models (described 

in the next section) with and without teacher licensure test-year (or “cohort”) fixed effects. The 

year in which candidates take the WEST-B is highly predictive of the performance of their 

students (F = 36.20), and there is little evidence that the within-cohort relationship between 

WEST-B scores is any different than the cross-cohort relationship (t = 0.19).15 This suggests that 

changes in average WEST-B scores over time do reflect true differences in teacher candidate 

quality. This is consistent with evidence from other studies showing that average SAT scores of 

prospective teachers have increased over the past two decades (Goldhaber & Walch, 2014; 

Lankford et al., 2014),16 recent cohorts of prospective teachers have higher undergraduate 

GPAs than their predecessors (Gitomer, 2007), and new teachers are now coming from more 

competitive undergraduate institutions than in past years (Lankford et al., 2014). Finally, the 

developer of the WEST-B and WEST-E (Pearson) describes the tests as “criterion-referenced,” 

meaning that they are “designed to measure a candidate's knowledge and skills in relation to 

                                                 
15 We note that recent cohorts of teachers appear to be more effective conditional on other observed covariates, 
which does not support the narrative that the “war on teachers” (e.g., Gamson, 2015) is having detrimental impacts 
on the teacher workforce. 
16 The increase in SAT scores documented in Lankford et al. (2014) is 0.10 standard deviations from 2002 to 2010, 
which is not as dramatic as the 0.19 standard deviation increase in WEST-B scores over the same time period. 
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an established standard (a criterion), rather than in relation to the performance of other 

candidates.”17 For these reasons, we standardize licensure test scores across all years in our 

primary analysis.18 

Means of the standardized teacher licensure test scores in Table 1 permit some 

comparisons across different kinds of teachers, but we summarize the complete distribution of 

scores for each sample with kernel density plots of WEST-B scores (on the original scoring scale) 

for six mutually exclusive groups of test takers in Figure 2. The first three groups are considered 

in this study: middle school math teachers, ninth-grade algebra and geometry teachers, and 

ninth-grade biology teachers.19 For comparison, we also include elementary teachers in tested 

grades and subjects (analogous to teachers considered in prior studies of teacher licensure 

tests), all other teachers (i.e., those who are in the workforce but not in one of these other 

samples), and all test takers who never become teachers in Washington State public schools. 

The figure shows that ninth-grade teachers tend to score higher on all three WEST-B tests than 

middle school math teachers, and both groups of teachers tend to score dramatically higher on 

the WEST-B Math test than elementary teachers, other teachers, and test takers who are never 

observed in the teaching workforce.  

Figure 3 shows similar kernel density plots for WEST-E tests; again, we include the 

WEST-E tests required for elementary teachers for comparison purposes. The first two panels of 

Figure 3 show that ninth-grade algebra and geometry teachers tend to score considerably 

                                                 
17 https://www.west.nesinc.com/PageView.aspx?f=GEN_AboutTheTests.html 
18 We also experiment with models that consider test scores standardized within year, and the results are 
qualitatively similar (results available from authors upon request). 
19 For the purposes of this figure, teacher type was determined by the number of students in each subject–grade 
combination taught in the analytic sample or elementary sample. 

https://www.west.nesinc.com/PageView.aspx?f=GEN_AboutTheTests.html
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higher than middle school math teachers on both WEST-E Math tests, though both groups 

perform better, on average, than test takers who are not observed in the state’s teaching 

workforce.20 For the other WEST-E tests, teachers in our samples do not perform much better, 

on average, than other teachers or test takers not observed in the workforce. The fact that 

ninth-grade teachers tend to score higher on both the WEST-B tests and WEST-E tests 

compared to other teachers is not surprising given the high degree of correlation between 

these tests; for instance, the correlation between the WEST-B math test and the WEST-E Middle 

Level Math test is 0.59.21 

The “Cut Score” line in each plot within Figures 2 and 3 illustrates that, while the passing 

score is nominally set to the same scale score (240) for all tests, some of these licensure tests 

appear much more difficult to pass than others. Figures 4 and 5 show overall passing rates for 

these tests across all teacher candidates in Washington state and compares these passing rates 

to those in other states (California, Florida, and Michigan) that report these numbers. Generally 

speaking, the passing rates on the WEST-B tests are much higher than the passing rates for 

basic skills licensure tests in these other states, while the passing rates on the WEST-E tests 

considered in our primary analysis are more in line with (and even lower than in some cases) 

the passing rates for subject-specific licensure tests in these other states. Figures 4 and 5 

illustrate that, unless the underlying skillsets of teacher candidates in these states are wildly 

different, cut scores for passing licensure tests are set at very different levels in different 

settings. 

                                                 
20 39.6% of teacher candidates who fail the WEST-E Math on their first test administration eventually pass it, while 
another 31.8% eventually pass the WEST-E MLM test. 
21 Correlations between the licensure tests we consider range from 0.44 (between the WEST-E Biology and Middle 
Level Math test) to 0.80 (between the WEST-E Math and the Middle Level Math test). 
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We can also directly compare the difficulty of different WEST-E tests by comparing the 

WEST-E performance of candidates who took different WEST-E tests but had similar scores on 

the WEST-B. We find that candidates tend to perform 16–20 points (or about one standard 

deviation) higher on the Elementary Education WEST-E tests than candidates with similar 

WEST-B scores perform on the Middle Level Math, Science, or Biology WEST-E exam, and 40 

points (or about two standard deviations) higher than candidates with similar WEST-B scores 

perform on the Mathematics WEST-E test. These differences in test difficulty have important 

policy implications that we discuss in the conclusion.22 

As a final exploration, we explore the extent to which there is non-random sorting of 

different students to teachers with different licensure test scores. Table 2 focuses on the 

middle school sample, and presents summary statistics of students assigned to a teacher in 

different quartiles of the distribution of WEST-B Math scores (where Q1 in column 1 represents 

the lowest quartile). We see clear evidence that students with higher prior performance and in 

advanced tracks are more likely to be assigned to teachers in the highest quartile of WEST-B 

scores; for example, the average student assigned to a top quartile teacher scored over 20% of 

a standard deviation higher on the previous year’s math test than the average student assigned 

to a bottom quartile teacher. As discussed in Section 4c, this evidence of non-random sorting 

strongly informs the analytic approach we describe in the next section and the robustness 

checks outlined in Section 5. 

 

                                                 
22 These comparisons are calculated from predicted values from separate regressions of each individual WEST-E 
score against WEST-B scores in math, reading, and writing. 
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IV. ANALYTIC APPROACH 

IV.I Student Achievement Models 

Our student achievement models can be situated within a larger literature that attempts 

to separate the impact of various interventions (including teacher characteristics) from other 

variables that influence student test performance.23 Following the existing literature about the 

predictive validity of teacher licensure tests at the elementary level (e.g., Clotfelter et al., 2007; 

Goldhaber & Hansen, 2010; Goldhaber, 2007), we estimate variants of the following student 

achievement model for each subject/grade combination (middle school math, ninth-grade 

algebra and geometry, and ninth-grade biology): 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛽𝛽0 +  𝛽𝛽1𝑌𝑌𝑖𝑖,𝑔𝑔−1,𝑡𝑡−1
′ +  𝛽𝛽2𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖  +  𝛽𝛽3𝑍𝑍𝑗𝑗𝑗𝑗 +  𝛽𝛽4𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 +  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                (1) 

In equation (1), 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the test score (MSP, SBA, or EOC) of student i in grade g, subject 

s, and year t, while in teacher j’s classroom. 𝑌𝑌𝑖𝑖,𝑔𝑔−1,𝑡𝑡−1
′  is a vector of student i's prior test scores 

in reading, mathematics, and (for ninth-graders) science. The student test scores in both 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

and 𝑌𝑌𝑖𝑖,𝑔𝑔−1,𝑡𝑡−1
′  are standardized by test, grade, and year across all test takers. Therefore, the 

units of the coefficients on the right hand side of equation (1) are standard deviations of 

student performance (relative to other scores on the same test in the same grade and year). 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 is a vector of student covariates for student i, in grade g, and year t, which includes 

indicators for student race/ethnicity, gender, free or reduced-priced lunch eligibility, 

                                                 
23 In the case of individual teacher evaluation, estimates from these models—commonly called “value-added 
models”, or VAMs—have been shown to be unbiased despite the presence of student sorting (Chetty et al. 2014a; 
Kane & Staiger, 2008), and a recent review of the literature surrounding value-added methodologies concluded, “To 
date, the studies that have used the strongest research designs provide compelling evidence that estimates of teacher 
value-added from standard models are not meaningfully biased by student-teacher sorting along observed or 
unobserved dimensions” and that “there is not any direct counter evidence indicating that value-added estimates are 
substantially biased” (Koedel et al., 2015). 
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gifted/highly capable, limited English proficiency (LEP), special education, and learning disabled. 

In some specifications, we include a vector 𝑍𝑍𝑗𝑗𝑗𝑗 of additional teacher covariates that includes 

indicators for teacher experience level in year t and an indicator for whether or not the teacher 

possesses an advanced degree in year t. We estimate the model in equation (1) by ordinary 

least squares (OLS) and cluster the error terms 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 at the teacher level to account for 

correlation between the errors of students taught by the same teacher. 

In our primary specifications of the model in equation (1), 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 is the licensure test 

score of teacher j standardized across all years of test takers. The coefficient 𝛽𝛽4 in these 

specifications can be interpreted as the extent to which continuous licensure test scores 

provide a “signal” of future teacher effectiveness (i.e., the expected increase in student 

performance associated with a one standard deviation increase in the licensure test score of 

teacher j). We can also mitigate concerns about nonlinearities and ceiling effects in test scores 

(see Figure 2) by estimating additional specifications that replace 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 with a vector of 

indicators for the quartile of the distribution of test scores for teachers in that sample (Q2, Q3, 

or Q4, with the reference category being Q1) that the test score of teacher j falls into.24 In these 

specifications, 𝛽𝛽4 is actually a vector of coefficients, each of which represents the expected 

increase in a student's test score associated with having a teacher with a test score in the 

second, third, or fourth quartile (respectively), relative to having a teacher with a test score in 

the lowest quartile.25 

                                                 
24 We calculate quartiles within each sample because very few teachers in the analytic sample scored in the bottom 
quartile of the overall distribution of WEST-B Math scores. 
25 As a further check for nonlinearities, we also estimate models that replace the licensure scores with a teacher fixed 
effect and plot the resulting value-added estimates against teacher licensure scores. 
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We estimate a number of different specifications of the model in equation (1). We first 

estimate a specification without any teacher covariates, so teachers are compared to all other 

teachers in the sample, and then a specification that adds teacher covariates, so teachers are 

compared to all other teachers in the sample with the same experience and degree level. We 

also estimate a specification that controls for student “track” (basic, regular, or advanced), so 

comparisons are only made within the same types of courses; note that this makes 

comparisons between teachers and students in the same track but across schools. 

Finally, we consider a number of specifications that add various fixed effects intended to 

account for potential sources of bias (discussed in Section 4c). We estimate one specification 

with school fixed effects (so teachers are compared to other teachers in the sample in the same 

school), and another with school-by-year fixed effects (so teachers are compared to other 

teachers in the same school and year). Finally, we follow Jackson (2014) and Protik et al. (2013) 

and estimate models that explicitly control for student tracking within schools by including 

school-year-grade-track fixed effects. These specifications only make comparisons within the 

same track within the same grade, year, and school.26 

As a preliminary check on the extent to which the different model specifications above 

control for non-random sorting of students to teachers by student performance and teacher 

licensure test scores, we estimate the specifications of the model in equation (1) but using 

student prior performance as the outcome variable (and dropping it from the list of predictor 

                                                 
26 We also experiment with the models described in Hendricks (2014) that are identified by the movement of 
teachers between school-grade-year-subject combinations. However, our relatively sparse data on licensure test 
scores means that these cells do not capture the average licensure test score for all teachers within the cell, so within-
cell changes could be due to true changes in teacher skills or changes in the composition of teachers with an 
observed licensure test score.  
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variables). We find that teacher WEST-B scores are a statistically-significant predictor of student 

prior performance in all specifications in middle school math, but are not consistently 

statistically-significant in ninth-grade algebra and geometry or ninth-grade biology. This 

suggests that there is more non-random sorting by student performance and teacher licensure 

test scores in our middle school sample than in our high school sample. This is likely because 

our high school samples focus on students in specific courses (i.e., Algebra, Geometry, and 

Biology) because the high-school tests are course-specific, and much of the non-random sorting 

at the high school level is likely to be between different kinds of courses. 

IV.II Student Course Taking Models 

To investigate the relationships between teacher licensure test scores and STEM course 

taking in high school, we first estimate variants of the following model predicting whether 

seventh grade students in 2009-2010 and eighth grade students in 2009-10 and 2010-11 take 

an advanced math or science course in high school27: 

𝑓𝑓�𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� =  𝛾𝛾0 +  𝛾𝛾1𝑌𝑌𝑖𝑖,𝑡𝑡−1′ +  𝛾𝛾2𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖  +  𝛾𝛾3𝑍𝑍𝑗𝑗𝑗𝑗 +  𝛾𝛾4𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 +  𝛾𝛾5𝑆𝑆𝑘𝑘 +  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                (2) 

In equation (2), 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is an indicator for whether student i who has teacher j in eighth 

grade in year t takes an advanced course in high school k, while 𝑆𝑆𝑘𝑘 is the number of advanced 

math or science courses offered by high school k (to control for differential opportunities to 

take advanced STEM courses for students in different high schools). All other control variables 

are the same as the model in equation (1), and we also consider similar specifications for 

                                                 
27 We focus on seventh and eighth graders in these years because we observe all four years of high school for these 
students. 
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equation (2) as those described above. For example, we estimate models in which 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 is the 

licensure test score of teacher j standardized across all years of test takers. The coefficient 𝛾𝛾4 in 

these specifications can be interpreted as the expected increase in the probability that student i 

takes an advanced course in subject s in high school associated with a one standard deviation 

increase in the licensure test score of teacher j. Our primary specifications of the model in 

equation (2) is a linear probability model (i.e., 𝑓𝑓�𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� = 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ) because this allows us to 

isolate teacher effects by grade as outlined by Chetty et al. (2014b), but we also experiment 

with logistic regression models (i.e., 𝑓𝑓�𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� = log � 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
1−𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

�)  and find qualitatively similar 

results. 

Finally, we estimate variants of a model predicting the number of advanced math and 

science courses taken by the same cohorts of seventh and eighth-grade students once they get 

to high school: 

𝑓𝑓(𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) =  𝛼𝛼0 +  𝛼𝛼1𝑌𝑌𝑖𝑖,𝑔𝑔−1,𝑡𝑡−1
′ +  𝛼𝛼2𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖  +  𝛼𝛼3𝑍𝑍𝑗𝑗𝑗𝑗 +  𝛼𝛼4𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑗𝑗 + 𝛾𝛾5𝑆𝑆𝑘𝑘 +  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖     (3) 

In equation (3), 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the number of advanced STEM courses taken in high school by 

student i who has teacher j in eighth grade in year t. As with the model in equation (2), our 

primary specifications of the model in equation (3) is an OLS model (i.e., 𝑓𝑓�𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ) so 

we can isolate teacher effects by grade (Chetty et al. (2014b), but we also experiment with 

Poisson regression models for count data (i.e., 𝑓𝑓�𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� = log�𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� ) and find qualitatively 

similar results. 

An important issue in both sets of course-taking models is modeling the error terms in 

equations (2) and (3). While in the achievement models our primary concern was with 
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dependence between students taught by the same teacher (so we clustered errors at the 

teacher level), in the course-taking models we are concerned both with dependence between 

students taught by the same teacher and dependence between students who attend the same 

high school. We therefore cluster the error terms 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 in equations (2) and (3) at both the 

teacher and high school level using two-way cluster robust standard errors described in 

Cameron & Miller (2015). 

 

IV.III Potential Sources of Bias 

We conclude this section by discussing four potential sources of bias in the estimates 

from the models described above. First, as we discuss in Section 3, candidates can submit 

scores on other tests (e.g., PRAXIS or SAT) to satisfy the state’s WEST-B requirement, and not all 

teacher candidates go on to take the WEST-E to get a teaching credential in Washington. In 

each case, this means that a nonrandom subset of teacher candidates in Washington State has 

taken each test. This could lead to bias if the relationship between licensure test scores and 

student outcomes for the group of test takers is different than it would have been for non-test 

takers. We have no way to account for the potential source of bias, so all results reported in 

this paper are only generalizable to the population of candidates who take these licensure 

tests. 

Second, teacher candidates who take these tests are non-randomly selected into the 

public teaching workforce, raising the concern that candidates with a given licensure score who 

enter the workforce are not representative of all teacher candidate with that score. It is not 
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clear that there is a convincing way to account for this potential source of bias.28 Indeed, it is 

quite plausible that there is considerable selection in the case of tests with low passing rates 

(such as the WEST-E tests shown in Figure 3), given that teacher candidates who fail the test the 

first time may be more likely to re-take the test and ultimately enter the workforce if they have 

a greater commitment to teaching.29 If these individuals become more effective teachers than 

teacher candidates with similar WEST-E scores but who did not enter the workforce would have 

been had they entered the workforce, this would cause a downward bias in the estimated 

relationships between WEST-E scores and student outcomes. We are less concerned about 

sample selection bias in the WEST-B results because so few teachers in the analytic samples 

failed any of these tests. 

Third, ample evidence suggests that teacher candidates who enter the teaching 

workforce are non-randomly sorted into different schools and classrooms (e.g., Clotfelter et al., 

2005; Goldhaber et al., 2015b; Kalogrides and Loeb, 2013).30 While this sorting on observables 

does not bias our estimates (since we explicitly control for a suite of observables), our 

estimates will be biased if there are unobserved variables that are correlated both with 

teachers’ licensure scores and the student outcomes we investigate. A broad literature has 

considered this potential source of bias in estimating the impacts of individual teachers on 

                                                 
28 For instance, while attempts have been made to account for sample selection of this type in prior work in 
Washington State (e.g. Goldhaber et al., 2014, 2016), there is not an obvious instrumental variable in this context 
that could be used to predict workforce entry for teacher candidates. 
29 Along observable dimensions, candidates who pass the WEST-E Math test on the first attempt scored 31% of a 
standard deviation higher on the WEST-B math test than candidates who fail the first time and eventually pass, and 
56% of a standard deviation higher on the WEST-B math test than candidates never pass the test. 
30 In particular, prior work in Washington (Goldhaber et al., 2015b) has shown that low-performing students are 
more likely to be assigned to teachers with low WEST-B scores than higher-performing students in other districts, in 
other schools in the same district, and—particularly in middle school math—in other classrooms within the same 
school. This is borne out in the specification checks described in Section 4a. 



  24 

student test performance (e.g., Bacher-Hicks et al., 2014; Chetty et al., 2014a; Jackson, 2014; 

Kane & Staiger, 2008; Kane et al., 2013; Koedel et al., 2015; Rothstein, 2010, 2014) and 

generally suggests that the student achievement models described above are sufficient to 

control for non-random sorting, though the evidence is more tenuous at the higher grade levels 

considered in this paper. Jackson (2014), for instance, illustrates that the prevalence of ability 

tracking at the high school level can bias the estimates from models that do not explicitly 

account for these tracks. 

We aim to minimize and/or bound this potential source of bias in four ways. First, the 

specifications with school and school-by-year fixed effects compare students and teachers 

within the same school, and thus minimize the impact of sorting across different schools. 

Further, the models that include school-year-grade-track fixed effects help account for 

potential bias due to non-random sorting across tracks within schools. Third, we follow 

Clotfelter et al. (2006) and Horvath (2015) and estimate models restricted to schools in which 

students are distributed relatively equitably across classrooms according to observable 

characteristics, on the assumption that these schools are also the least likely to non-randomly 

sort students to classrooms along unobserved dimensions. Finally, we follow the approach of 

Altonji et al. (2005, 2008) and estimate the relative amount of sorting on unobservables that is 

required to explain the relationships we find. Our general conclusion (discussed in Section 5c) is 

that, given the extent of non-random sorting in middle school grades, our results in middle 

school may be more sensitive to this potential source of bias than the high school results. 

A final potential source of bias arises from non-random teacher attrition. A relationship 

between licensure tests, unobserved teacher traits associated with effectiveness, and the 
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propensity of teachers to leave the profession would bias our findings.31 We check for this 

potential source of bias in two ways. First, we estimate models predicting teacher attrition as a 

function of experience, degree level, prior estimated effectiveness, WEST-B scores, and an 

interaction between prior effectiveness and WEST-B scores. If there exists a relationship 

between attrition, licensure tests, and teacher effectiveness, we would expect a significant 

interaction term. However, we do not find evidence that teachers with different WEST-B scores 

are any more or less likely to leave the workforce as a function of their prior estimated 

effectiveness. We also estimate models solely for first-year teachers (before any teachers have 

left the workforce), and generally find stronger relationships between licensure test scores and 

student outcomes.32 This could reflect the decreasing importance of teachers’ preservice 

experiences and skills as they gain teaching experience (see Goldhaber et al., 2013), but could 

also suggest that non-random teacher attrition biases the estimates discussed in the next 

section downwards. 

V. RESULTS 

Before describing the results relating teacher licensure test scores to student 

achievement in secondary STEM subjects, we note two peripheral estimates from the models in 

equation (1) that lend context to our findings. First, our models predict that students taught by 

a first-year teacher will score 0.08 standard deviations lower in middle school math, 0.07 

standard deviations lower in high school math, and 0.02 standard deviations lower in ninth-

                                                 
31 Goldhaber et al. (2011) find that teachers who leave the profession tend to have higher licensure scores but lower 
prior estimates of value-added. See also Feng and Sass (2016) and Hanushek et al. (2016). 
32 This parallels findings from Goldhaber (2007). 
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grade biology, all else equal, than students taught by teachers with 5 or more years of 

experience. Second, when we estimate models with a teacher fixed effect and calculate the 

standard deviation of these estimated teacher effects (the teacher “effect size”), we find that 

the teacher effect size is 0.17 in middle school math, 0.39 in high school math, and 0.29 in 

ninth-grade biology.33  

V.I Licensure Tests and Student Achievement 

Table 3 shows the estimated relationships between different licensure test scores and 

student performance in middle school math (Panel A), ninth-grade algebra and geometry (Panel 

B), and ninth-grade biology (Panel C).34 We first focus on the results for the basic-skills tests 

(the WEST-B Math). The results in middle school math and ninth-grade algebra and geometry 

are broadly consistent with the findings from the existing literature discussed in Section 2, and 

quite robust across different specifications of our student achievement model, though only the 

results in middle school math are statistically significant. Specifically, a one standard deviation 

increase in a teacher’s WEST-B Math score is correlated with a 0.01-0.03 standard deviation 

increase in student math performance. Thus, the expected increase in student performance 

associated with a one standard deviation increase in the teacher’s WEST-B score is roughly 

equivalent to one-seventh to one-third of the expected increase in student performance 

associated with having a teacher with 5 or more years of experience relative to a first-year 

                                                 
33 These statistics come from Empirical Bayes shrunken VAM estimates. The middle school effect size is 
comparable to earlier estimates from the elementary level in Washington State (Goldhaber et al., 2012), while the 
high school effect sizes are about twice as large as comparable effect sizes reported in Mansfied (2015). The effect 
sizes calculated from a model with school fixed effects is 0.32 for middle school math, 0.45 for 9th grade Algebra 
and Geometry, and 0.27 for 9th grade Biology teachers. 
34 We also estimate models that consider other WEST-B tests, separately and jointly, the mean WEST-B score 
across subtests, and the maximum WEST-B score rather than the first WEST-B score. These results are available 
from the authors upon request. 
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teacher. Though we would characterize these relationships as modest, they are quite 

comparable to relationships reported at the elementary level (e.g., Goldhaber, 2007) and 

greater than the only reported relationship at the secondary level (Clotfelter et al., 2010).35 

We plot estimated effects on student achievement by quartile of teacher WEST-B Math 

score in Figure 6, illustrating that the expected difference in student performance associated 

with having a teacher who scored in the top quartile of the WEST-B Math relative to the bottom 

quartile is 0.05 standard deviations of student performance in middle school math.36 This is 

roughly one-third of a standard deviation of teacher performance in these grades. On the other 

hand, the comparable different in ninth-grade algebra and geometry is just 0.01 standard 

deviations of student performance (see Figure 6).37  

Perhaps surprisingly, the relationships in Table 3 between WEST-B Math scores and 

student performance in ninth-grade biology are considerably stronger than in other grade 

levels; a one standard deviation increase in a teacher’s WEST-B Math score is correlated with a 

.072 to .161 standard deviation increase in student biology performance.38 As illustrated in 

Figure 6, the expected difference in student performance associated with having a teacher who 

scored in the top quartile of the WEST-B Math relative to the bottom quartile is 0.19 standard 

deviations of student performance, which is almost four times as large as the comparable 

                                                 
35 The coefficient on teacher test score from the base model in Clotfelter et al. (2010) is 0.0071. 
36 The quartile models estimated for Figure 6 include the same suite of of covariates in the models estimated in 
column 3 of Table 3. 
37 Estimates from a student fixed-effects model in middle school math are broadly consistent with these results 
(available from the authors upon request). 
38 The stronger results in biology may suggest that the lagged science test score does not adequately control for prior 
performance when compared to the lagged math score in the 9th grade Algebra and Geometry models. By comparing 
the correlation between prior performance and performance on the EOC, we do not find this to be the case. The 
correlation of a student’s lagged science test and his or her EOC biology exam is 0.759, and the correlation between 
a student’s lagged math score and their EOC algebra exam is 0.633. Similarly, the correlation between a student’s 
lagged math score and their EOC geometry exam is 0.627.  
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relationship in middle school. To put this in context, this means that the expected difference in 

student biology performance associated with having a teacher in the top quartile of the WEST-B 

Math distribution relative to the bottom quartile is about two thirds a standard deviation of 

teacher effectiveness in ninth-grade biology, or roughly equivalent to the expected difference 

associated with having a teacher at the 75th percentile of the ninth-grade biology value-added 

distribution relative to an average teacher. 

We now turn our attention to the estimated relationships between WEST-E (the subject-

specific licensure tests) scores and student performance in middle and high school math. The 

estimates in Panel A of Table 3 give somewhat mixed evidence about the relationship between 

WEST-E Middle-Level Math (MLM) scores and student performance in middle school math 

(note that we do not consider MLM scores in high school math due to low sample sizes). 

Specifically, the relationships between WEST-E MLM scores and student performance tend to 

be statistically significant (and comparable in magnitude to the WEST-B estimates) when 

comparisons are made within schools, but not in the models without school or school-by-year 

fixed effects. The estimates in Panels A and B of Table 3 show little evidence that WEST-E Math 

scores are predictive of student performance in middle school math or ninth-grade algebra and 

geometry, although the magnitude of the cross-school estimates for ninth-grade algebra and 

geometry—shown in the margin plots in Figure 7—are positive, relatively large, and marginally 

statistically significant.39  

Finally, Panel C of Table 3 presents estimates of the relationships between each of the 

WEST-E tests that teachers can pass to teach high school biology (the Science and Biology tests) 

                                                 
39 We do not present results for the WEST-E MLM test in ninth-grade algebra because of small sample sizes. 
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and student biology performance in ninth grade. Echoing the results for the WEST-B Math, the 

relationships between these test scores and student performance in ninth-grade biology tend 

to be large and statistically significant. The magnitudes of these coefficients are striking; for 

example, the expected increase in student test scores associated with a one standard deviation 

increase in a Biology teacher’s WEST-E Science score is over one third of a standard deviation of 

teacher effectiveness in ninth-grade biology (.29). Figure 7 reinforces that, as for the WEST-B 

Math, the WEST-E tests are a much stronger predictor of student performance in ninth-grade 

biology than in the other grade levels we consider.  

V.II. Licensure Tests and Student High School Course Taking 

 We next consider relationships between teacher licensure test scores and the 

probability that students take advanced STEM courses in high school by variants of the linear 

probability model described in equation (2). The estimates from these models are presented in 

Table 4. In Panel A, we consider the relationship between the WEST-B score of the student’s 

middle school math teacher and the probability that the student takes an advanced math 

course in high school, while Panel B considers the probability that the student takes an 

advanced science course in high school. Since none of these coefficients are statistically 

significant, our interpretation is that the results in Table 4 provide little to no evidence of a 

relationship between middle school teachers’ licensure test scores and the probability that 

their students take an advanced math or science course in high school. 

Finally, Table 5 explores estimated relationships between a middle school math 

teacher’s WEST-B math test and the number of advanced science or math courses taken in high 

school by their students from the OLS regression in equation (3). Though basic skills test scores 
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are marginally predictive of taking more advanced math courses when school-year and school-

year-track controls are included, the general conclusion from Table 5 is that there is also little 

evidence of a relationship between middle school teachers’ licensure test scores and the 

number of advanced math or science courses that their students take in high school. 

V.III Extensions and Robustness Checks 

We pursue a number of extensions and robustness checks to the results described in 

Sections 5a and 5b. First, given that the achievement results for the subject-specific WEST-E 

tests are quite similar to the results for the basic skills WEST-B tests, a natural question is 

whether WEST-E test scores provide any more signal about future teacher effectiveness than is 

already contained in the WEST-B test scores. To investigate this, we estimate models of the 

relationships between WEST-E scores and student performance in middle and high school math 

controlling for each teacher’s WEST-B scores. In middle school math, estimates from models 

based on within-school comparisons suggest that WEST-E MLM and WEST-E Math test scores 

do provide additional signal about future teacher effectiveness beyond WEST-B scores. That 

said, this does not appear to be the case in high school math, and perhaps more surprisingly, it 

does not appear to be the case when we investigate relationships between WEST-E scores and 

student performance in ninth-grade biology controlling for each teacher’s WEST-B scores. This 

suggests that the large and statistically significant relationships between WEST-E scores and 

student performance in ninth-grade biology can largely be explained by the relationships with 

WEST-B scores. 

In another extension of the achievement results in Table 3, we consider models that 

interact teacher licensure test scores with different student characteristics (e.g., prior 
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performance, participation in FRL, student URM indicator) to test whether licensure test scores 

are differentially predictive of student performance for different types of students.40 We find 

little evidence of differential effects by student prior performance or demographics. Likewise, 

to test whether the predictive power of subject-specific licensure tests for student achievement 

might matter more depending on the track of the course, we estimate models that interact 

teacher licensure test scores with the track indicators discussed in Section 3. Due to sample size 

limitations, we were able to estimate these models only for middle and high school math 

classes. We find little evidence of differential impacts between course track and subject-specific 

licensure exams. 

As discussed in Section 4c, we also perform several robustness checks of the 

achievement results designed to investigate whether the estimates described above may be 

biased by the non-random assignment of students to teachers (Rothstein, 2009, 2010). Because 

both robustness checks require large sample sizes, we restrict these checks to the WEST-B 

models. We first pursue the approaches of Clotfelter et al. (2006) and Horvath (2015), who 

create “apparently random samples” by dropping students and teachers in schools that display 

considerable tracking of students to classroom along observed dimensions.41 This approach 

works well in the ninth-grade samples (both algebra/geometry and biology), and we find that 

all statistically-significant coefficients reported in Table 3 are still statistically-significant when 

the models are estimated in the apparently random sample. This suggests that the ninth-grade 

                                                 
40 These estimates are available from the authors upon request. 
41 In our application of the Clotfelter et al. (2006) approach, we drop all schools in which at least one Chi-square test 
rejects the null hypothesis that classrooms within schools do not predict student gender, race, FRL status, or an 
indicator for scoring above the mean on the prior year test. In our application of the Horvath (2015) approach, we 
drop all schools in which an F-test rejects the null hypothesis that classrooms within schools do not predict student 
prior performance. In both approaches, we reject at the α = 0.05 level. 
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results are not driven solely by the nonrandom sorting of students to classrooms. 

Unfortunately, as discussed in Section 4a, apparent within-school sorting of students with low 

prior performance to teachers with low WEST-B scores is more prevalent in the middle school 

math sample than in the ninth-grade samples. As a consequence, both the Clotfelter et al. 

(2006) and Horvath (2015) approaches drop at least 90% of the middle schools in the sample, 

meaning that the apparently random sample in middle school is not large enough to make a 

meaningful comparison to the results in Table 3.42  

As a second robustness check we adopt the approach of Altonji et al. (2005, 2008), who 

calculate the relative amount of selection on unobservables required to explain a given effect. 

Given that this approach requires a dichotomous treatment variable, we first create a binary 

indicator for whether a teacher scored in the lowest quartile of the distribution of WEST-B 

scores, and estimate the model in equation (1) with this indicator as the variable of interest 

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗).43 We then use the Altonji et al. (2005, 2008) approach to estimate that the magnitude 

of sorting on unobservables would need to be at least 13% of the magnitude of the observed 

sorting on observables to explain the estimated relationship between WEST-B Math scores and 

student math performance reported in Table 3.44 While this may seem like a small percentage, 

the magnitude of sorting on observables is quite large in middle school grades due to the 

relationship between teacher WEST-B scores and student prior performance, so there would 

                                                 
42 Both the Clotfelter et al. (2006) approach and the Horvath (2015) approach drop 91% of middle schools. 
43 The estimated coefficient of interest in this model is 0.025. 
44 This estimate uses the specification from column 3 of Panel A of Table 3. For reference, the corresponding 
estimates from the analogous specification is 50% in ninth-grade Algebra/Geometry and 70% in ninth-grade 
Biology. See Altonji et al. (2008), pp. 348-349, for a succinct summary of this methodology. 
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still need to be considerable non-random sorting on unobserved variables that are not captured 

by prior performance to explain away the middle school math finding. 

VI. CONCLUSIONS 

The results from this study suggest several broad conclusions and directions for future 

research. First, the achievement findings from middle and high school math about the modest, 

positive relationships between WEST-B Math scores and student math performance reinforce 

conclusions from the existing literature (e.g., Clotfelter et al., 2007; Goldhaber, 2007; 

Hendricks, 2014) that basic skills licensure test scores provide a significant, if modest, signal 

about future math teacher effectiveness. Given the very limited evidence about pre-service 

predictors of future teacher effectiveness (e.g., Harris & Sass, 2011), this suggests that basic 

skills test scores could be used for reasons beyond the pass/fail requirement for initial teacher 

credentialing (for example, as a measure of content knowledge for teaching for hiring and other 

personnel decisions). 

The second broad conclusion is that subject-specific licensure test scores provide some 

additional signal about student achievement in some subjects, although the relationships are 

not always statistically significant. The key policy question, then, is whether these results justify 

the barrier to entry they represent to potential STEM teachers. Our preliminary analysis in 

Section 3 suggests that the WEST-E tests in STEM fields are much more difficult to pass than the 

WEST-E tests in other fields like elementary education. Moreover, teachers who fail the WEST-E 

the first time they take it are about 10 percentage points less likely to enter the workforce, and 

teacher candidates of color tend to be more likely to fail these tests than white teacher 
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candidates (Goldhaber & Hansen, 2010), so are disproportionately impacted by this barrier to 

entry. These trends could be particularly problematic given the well-documented difficulty of 

school districts, and districts in Washington State in particular, to attract STEM teachers and 

teachers of color (Goldhaber et al., 2015a, 2015c). 

Another conclusion, and a unique contribution of this paper, relates to our investigation 

of the impact of teachers on science test scores and, specifically, the finding that relationships 

between licensure test scores and student performance in ninth-grade biology are considerably 

stronger than in math classrooms. One possible explanation is that teacher content knowledge 

(as measured by licensure tests) is simply more important to student performance in science 

than in math, but given that there is so little evidence about what predicts the effectiveness of 

science teachers, we caution against such a broad interpretation based on the relatively small 

ninth-grade biology sample sizes in this paper. 

Finally, our investigation of the relationship between teacher licensure test scores and 

student high school STEM course taking suggests little relationship between basic licensure test 

performance and students’ STEM course taking in high school. That said, the development of P-

20 data warehouses across the country might allow researchers to investigate the role of STEM 

teachers in influencing other important (Long et al., 2012; Federman, 2007, Schneider et al., 

1998) long-term student outcomes, such as majoring in STEM fields and employment in STEM 

industries.



  35 

References 

Aaronson, D., Barrow, L., and Sander, W. (2007). Teachers and student achievement in the 
Chicago public high schools. Journal of Labor Economics, 25(1):95-135. 

 
Altonji, J. G., Elder, T. E., & Taber, C. R. (2005). Selection on Observed and Unobserved 

Variables: Assessing the Effectiveness of Catholic Schools. Journal of Political Economy, 
113(1). 

 
Altonji, J. G., Elder, T. E., & Taber, C. R. (2008). Using selection on observed variables to assess 

bias from unobservables when evaluating Swan-Ganz catheterization. The American 
Economic Review, 98(2), 345-350. 

 
Appleton, K. (2013). Elementary science teacher education: International perspectives on 

contemporary issues and practice. Routledge. 
 
Angrist, J. D., & Guryan, J. (2008). Does teacher testing raise teacher quality? Evidence from 

state certification requirements. Economics of Education Review, 27(5), 483–503. 
 
Bacher-Hicks, A., Kane, T. J., & Staiger, D. O. (2014). Validating Teacher Effect Estimates using 

Changes in Teacher Assignments in Los Angeles (No. 20657). Cambridge, MA: National 
Bureau of Economic Research. 

 
Blazar, D., & Kraft, M. A. (2016). Teacher and teaching effects on students’ attitudes and 

behaviors. Educational Evaluation and Policy Analysis, 0162373716670260. 
 
Boyd, D. J., Grossman, P. L., Lankford, H., Loeb, S., and Wyckoff, J. (2009). Teacher preparation 

and student achievement. Educational Evaluation and Policy Analysis, 31(4):416-440. 
 
Burkam, D. T., Lee, V. E., & Smerdon, B. A. (2003). Mathematics, foreign language, and science 

coursetaking and the NELS: 88 transcript data. US Department of Education, Institute of 
Education Statistics, National Center for Education Statistics. 

 
Cameron, C., & Miller, D. L. (2015). A practitioner’s guide to cluster-robust inference. The 

Journal of Human Resources, 50(2), 317–372. 
 
Chamberlain, G. (1980). Analysis of covariance with qualitative data. Review of Economic 

Studies, 60, 585–612. 
 
Chetty, R., Friedman, J. N., & Rockoff, J. E. (2014a). Measuring the impacts of teachers I: 

Evaluating bias in teacher value-added estimates. American Economic Review, 104(9), 
2593–2632.  

 



  36 

Chetty, R., Friedman, J. N., & Rockoff, J. E. (2014b). Measuring the impacts of teachers II: 
Teacher value-added and student outcomes in adulthood. American Economic Review, 
104(9), 2633–2679. 

 
Clotfelter, C. T., Ladd, H. F., & Vigdor, J. (2005). Who teaches whom? Race and the distribution 

of novice teachers. Economics of Education Review, 24(4), 377-392. 
 
Clotfelter, C. T., Ladd, H. F., & Vigdor, J. L. (2006). Teacher-student matching and the 

assessment of teacher effectiveness. Journal of Human Resources, 41(4), 778-820. 
 
Clotfelter, C. T., Ladd, H. F., and Vigdor, J. L. (2007). Teacher credentials and student 

achievement: Longitudinal analysis with student fixed effects. Economics of Education 
Review, 26(6): 673-682. 

 
Clotfelter, C., Ladd H. F., and Vigdor, J. (2010). Teacher Credentials and Student Achievement in 

High School a Cross-Subject Analysis with Student Fixed Effects. Journal of Human 
Resources, 45 (3):655-681. 

 
Coleman, J. S., Campbell, E. Q., Hobson, C. J., McPartland, J., Mood, A. M., Weinfeld, F. D., and 

York, R. (1966). Equality of Educational Opportunity. Washington, DC, pages1066–5684. 
 
Federman, M. (2007) State graduation requirements, high school course taking, and choosing a 

technical college major. The B.E. Journal of Economic Analysis and Policy, 7, 4. 
 
Feng, L., & Sass, T. R. (2016). Teacher quality and teacher mobility. Education Finance and 

Policy. 
 
Gamson, D. (2015). The dismal toll of the war on teachers. Newsweek, October 5, 2015. 
 
Gershenson, S. (2016). Linking teacher quality, student attendance, and student achievement. 

Education Finance and Policy. 
 
Gitomer, D. H. (2007). Teacher Quality in a Changing Policy Landscape: Improvements in the 

Teacher Pool. Education Testing Service.  
 
Goldhaber, D. (2007). Everyone’s Doing It, but What Does Teacher Testing Tell Us About 

Teacher Effectiveness? Journal of Human Resources 42 (4): 765–94. 
 
Goldhaber, D., and Brewer, D. J. (1997). Why Don’t Schools and Teachers Seem to Matter? 

Assessing the Impact of Unobservables on Educational Productivity. Journal of Human 
Resources,  505–23. 

 



  37 

Goldhaber, D., and Brewer, D. J. (2000). Does Teacher Certification Matter? High School 
Teacher Certification Status and Student Achievement. Educational Evaluation and 
Policy Analysis 22 (2): 129–45. 

 
Goldhaber, D., Gross, B., & Player, D. (2011). Teacher career paths, teacher quality, and 

persistence in the classroom: Are public schools keeping their best? Journal of Policy 
Analysis and Management, 30(1), 57-87. 

 
Goldhaber, D., Grout, C., & Huntington-Klein, N. (2014). Screen twice, cut once: Assessing the 

predictive validity of teacher selection tools. CEDR Working Paper 2014-9. University of 
Washington, Seattle, WA. 

 
Goldhaber, D., & Hansen, M. (2010). Race, gender, and teacher testing: How informative a tool 

is teacher licensure testing? American Educational Research Journal, 47(1), 218–251. 
 
Goldhaber, D., and Hansen, M. (2013). Is It Just a Bad Class? Assessing the Long-Term Stability 

of Estimated Teacher Performance. Economica 80 (319): 589–612. 
 
Goldhaber, D., Krieg, J., and Theobald, R. (2016). Does the match matter? Exploring whether 

student teaching experiences affect teacher effectiveness and career paths. CALDER 
Working Paper 149. 

 
Goldhaber, D., Krieg, J., Theobald, R., and Brown, N. (2015a). Refueling the STEM and special 

education teacher pipelines. Phi Delta Kappan 97, pp. 56-62. 
 
Goldhaber, D., Lavery, L., and Theobald, R. (2015b). Uneven playing field? Assessing the teacher 

quality gap between advantaged and disadvantaged students. Educational Researcher, 
44(5), 293-307. 

 
Goldhaber, D., Liddle, S., and Theobald, R. (2013). The gateway to the profession: Evaluating 

teacher preparation programs based on student achievement. Economics of Education 
Review 34: 29-44. 

 
Goldhaber, D., Liddle, S., Theobald, R., and Walch, J. (2012). Teacher effectiveness and the 

achievement of Washington’s students in mathematics. WERA Educational Journal 4(2), 
6-12. 

 
Goldhaber, D., Theobald, R., and Tien, C. (2015c). Educator and student diversity in Washington 

State: Gaps and historical trends. CEDR Policy Brief 2015-10. 
 
Goldhaber, D., and Walch, J. (2014). Gains in Teacher Quality: Academic Capabilities of the US 

Teaching Force Are on the Rise. Education Next 14 (1): 38. 
 



  38 

Gottfried, M. A. (2015). The Influence of Applied STEM Coursetaking on Advanced Mathematics 
and Science Coursetaking. The Journal of Educational Research, 108(5), 382-399. 

 
Gottfried, M. A., Bozick, R., Rose, E., & Moore, R. (2016). Does Career and Technical Education 

Strengthen the STEM Pipeline? Comparing Students With and Without Disabilities. 
Journal of Disability Policy Studies, 26(4), 232-244. 

 
Gross, S. (1988). Participation and performance of women and minorities in mathematics: 

Volume II: Findings related to mathematics instruction for all students. Rockville, 
Maryland: Department of Educational Accountability. 

 
Hanushek, E. A., Rivkin, S. G., & Schiman, J. C. (2016). Dynamic Effects of Teacher Turnover on 

the Quality of Instruction. Economics of Education Review. 
 
Harris, D. N., and Sass, T. R. (2011). Teacher Training, Teacher Quality and Student 

Achievement. Journal of Public Economics 95 (7): 798–812. 
 
Hendricks, M. D. (2014). Public Schools Are Hemorrhaging Talented Teachers. Can Higher 

Salaries Function as a Tourniquet? Association for Education Finance and Policy. 
 
Hill, H.C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for 

teaching on student achievement. American educational research journal, 42(2), 371-
406. 

 
Horvath, H. (2015). Classroom Assignment Policies and Implications for Teacher Value-Added 

Estimation. Unpublished manuscript. 
 
Jackson, C. K. (2012). Non-cognitive ability, test scores, and teacher quality: Evidence from 9th 

grade teachers in North Carolina (No. w18624). National Bureau of Economic Research. 
 
Jackson, C. K. (2014). Teacher quality at the high school level: The importance of accounting for 

tracks. Journal of Labor Economics, 32(4), 645–684. 
 
Kalogrides, D., & Loeb, S. (2013). Different teachers, different peers: The magnitude of student 

sorting within schools. Educational Researcher, 42(6), 304-316. 
 
Kane, T. J, and Staiger, D. O. (2008). Estimating Teacher Impacts on Student Achievement: An 

Experimental Evaluation. Technical report, National Bureau of Economic Research. 
 
Kane, T. J., McCaffrey, D. F., Miller, T., & Staiger, D. O. (2013). Have We Identified Effective 

Teachers? Seattle, WA: Bill and Melinda Gates Foundation. 
 
Koedel, C., Mihaly, K., and Rockoff, J. E. (2015). Value-Added Modeling: A Review. Economics of 

Education Review. 



  39 

 
Lankford, H., Loeb, S., McEachin, A., Miller, L. C., and Wycoff, J. (2014). Who Enters Teaching? 

Encouraging Evidence That the Status of Teaching Is Improving. Educational Researcher 
43 (9): 444–53. 

 
Long, M. C., Conger, D., & Iatarola, P. (2012). Effects of high school course-taking on secondary 

and post-secondary success. American Educational Research Journal, 49, 285-322. 
Maeroff, G. I. (1985). Improving our teachers. The New York Times, Education Section 
 
Mansfield, R. K. (2015). Teacher quality and student inequality. Journal of Labor Economics, 

33(3 Part 1), 751-788. 
 
Meskauskas, J.A. (1976) Evaluation models for criterion-referenced testing: Views regarding 

mastery and standard-setting. Review of Educational Research, 46(1), 133-158. 
 
Monk, D. H., and King, J. A. (1994). Multilevel Teacher Resource Effects in Pupil Performance in 

Secondary Mathematics and Science. The Case of Teacher Subject Matter Preparation. 
Choices and Consequences: Contemporary Policy Issues in Education. Pages 29–58. 

 
Petek, N. & Pope, N. (2016). The multidimensional impact of teachers on students. University of 

Chicago Working Paper. 
 
President’s Council of Advisors on Science and Technology (US). (2010). Prepare and Inspire: K-

12 Education in Science, Technology, Engineering, and Math (STEM) for America’s 
Future. Executive Office of the President.  

 
Protik, A., Walsh, E., Resch, A., Isenberg, E., & Kopa, E. (2013). Does tracking of students bias 

value-added estimates for teachers? Washington D.C.: Mathematica Policy Research. 
 
Ravitch, D. (2003, August). A brief history of teacher professionalism. In Speech presented at the 

White House Conference on Preparing Tomorrow's Teachers. Retrieved November (Vol. 
13, p. 2010). 

 
Rivkin, S. G., Hanushek, E. A., and Kain, J. F. (2005). Teachers, Schools, and Academic 

Achievement. Econometrica 73 (2): 417–58. 
 
Rockoff, J. E. (2004). The Impact of Individual Teachers on Student Achievement: Evidence from 

Panel Data. American Economic Review: 247–52. 
 
Rothstein, J. (2009). Student sorting and bias in value-added estimation: Selection on observables 

and unobservables. Education, 4(4), 537-571. 
 
Rothstein, J. (2010). Teacher Quality in Educational Production: Tracking, Decay, and Student 

Achievement. The Quarterly Journal of Economics, 125(1), 175-214. 



  40 

 
Rothstein, J. (2014). Revisiting the impacts of teachers. UC-Berkeley Working Paper. 
 
Sass, T. (2015). Certification requirements and teacher quality: A comparison of alternative 

routes to teaching. Journal of Law and Economics, 58(1), 1-35. 
 
Schneider, B., Swanson, C., & Riegle-Crumb, C. (1998). Opportunities for learning: Course 

sequences and positional advantages. Social Psychology of Education, 2, 25-53. 
 
White House Office of Science and Technology Policy (2012). Preparing a 21st century 

workforce: Science, Technology, Engineering, and Mathematics (STEM) education in the 
2013 Budget. Retrieved from 
https://www.whitehouse.gov/sites/default/files/microsites/ostp/fy2013rd_stem.pdf. 

 
Wilson, S. M., Floden, R. E., and Ferrini-Mundy, J. (2001). Teacher Preparation Research: Current 

Knowledge, Gaps, and Recommendations: A Research Report Prepared for the US 
Department of Education and the Office for Educational Research and Improvement, 
February 2001. Center for the Study of Teaching and Policy 

 
  



  41 

Tables 
 

Table 1. Student-Year Level Summary Statistics by Course 
  

 7th & 8th Grade 9th Grade 9th Grade 
  Middle Sch. Math Alg./Geo. Biology 
Student Variables 

   

Lagged Math 0.105 -0.017 0.425 
(0.928) (0.808) (0.988) 

Lagged Reading 0.095 0.032 0.356 
(0.920) (0.859) (0.914) 

Lagged Science 
 

-0.009 0.378  
(0.862) (0.970) 

Female 0.496 0.501 0.516 
Multi-racial 0.048 0.044 0.043 
Am. Ind./ Alaska Nat. 0.017 0.018 0.017 
Asian/ Pac. Isl. 0.109 0.090 0.132 
Black 0.059 0.060 0.052 
Hispanic 0.213 0.216 0.160 
Gifted 0.074 0.027 0.075 
LEP 0.050 0.044 0.023 
Spec. Ed. 0.061 0.051 0.058 
FRL 0.483 0.486 0.376 
Learning Disability 0.033 0.028 0.033 
Basic Track 0.009 0.020 0.000 
Average Track 0.724 0.943 0.846 
Advanced Track 0.266 0.037 0.136 
Advanced H.S. Math Course* 0.539   
Advanced H.S. Science Course* 0.257   

Number of High School Math Courses* 0.854 
  

(0.963) 
  

Number of High School Science Courses* 0.925 
  

(0.861) 
  

Teacher Variables 
   

Standardized WEST-B Math 0.567 0.687 0.635 
(0.553) (0.533) (0.506) 

Standardized WEST-B Reading 0.234 0.189 0.593 
(0.820) (0.870) (0.641) 

Standardized WEST-B Writing 0.207 0.189 0.584 
(0.801) (0.860) (0.672) 

Proportion with a WEST-E score 0.375 0.367 0.413 

Standardized WEST-E MLM 0.129 
  

(0.788) 
  

Standardized WEST-E Math -0.024 0.241 
 

(0.812) (0.722) 
 

Standardized WEST-E Science 
  

-0.020   
(0.930) 

Standardized WEST-E Biology 
  

0.189   
(0.956) 

Observations 135,079 54,354 15,116 
NOTE: Each sample is defined as student-year observations by course type linked to teachers with WEST-B 

scores. Blank cells are ommited due to small sample sizes. *Summary statistics from advanced course 
models (see Table 4). 
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Table 2. Summary Statistics by Teacher Quartile of Basic Skills Math Licensure Test 
  Teacher Q1 Teacher Q2 Teacher Q3 Teacher Q4 

Lagged Math 0.015 0.078 0.082 0.235 
(0.919) (0.906) (0.914) (0.954) 

Lagged Reading 0.027 0.079 0.081 0.188 
(0.930) (0.911) (0.909) (0.920) 

Female 0.497 0.499 0.497 0.492 
Multi-racial 0.047 0.052 0.047 0.048 

Am. Ind./ Alaska Nat. 0.017 0.014 0.017 0.019 
Asian/ Pac. Isl. 0.095 0.106 0.108 0.127 

Black 0.056 0.063 0.060 0.057 
Hispanic 0.233 0.215 0.231 0.176 

Gifted 0.047 0.064 0.071 0.111 
LEP 0.057 0.049 0.055 0.038 

Spec. Ed. 0.066 0.057 0.061 0.060 
FRL 0.504 0.486 0.502 0.444 

Learning Disability 0.036 0.031 0.032 0.030 
Advanced Track 0.236 0.244 0.256 0.325 
Average Track 0.755 0.749 0.727 0.672 

Basic Track 0.009 0.008 0.018 0.004 
Observations  34,410 30,813 33,858 35,998 

Note: The summary statistics reported here are from the middle school math sample and 
          are student-year averages. 
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Table 3: OLS Student Achievement Models 
Panel A: Predicting student achievement in middle school math 
WEST-B Math 
Standardized Score 

.024* .026* .027* .031** .026** .033**                     
(.012) (.012) (.011) (.010) (.010) (.011)                     

WEST-E MLM 
Standardized Score 

            .017 .017 .029** .029* .026           
            (.011) (.011) (.011) (.014) (.018)           

WEST-E Math 
Standardized Score 

                      -.004 -.011 -.000 -.015 .020 
                      (.013) (.012) (.013) (.015) (.017) 

Teacher controls No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Course track No No  Yes Yes Yes No No  Yes Yes Yes No No  Yes Yes Yes No 
School fixed effects No No  No  Yes No No No  No  Yes No No No  No  Yes No No 
School-year fixed effects No No  No  No Yes No No  No  No Yes No No  No  No Yes No 
Schl-track-yr fixed effects No No  No  No No Yes No  No  No No Yes No  No  No No Yes 
Number of unique teachers 914 914 914 820 701 595 387 387 285 223 163 256 256 161 106 83 
Number of unique students 119,411 119,411 119,411 109,323 84,430 54,574 47,011 47,011 33,656 20,444 11,326 34,273 34,273 21,061 11,445 7,072 
Panel B: Predicting student achievement in ninth grade math 
WEST-B Math 
Standardized Score 

.033 .031 .031 .013 .012 .018                     
(.022) (.023) (.023) (.016) (.015) (.016)                     

WEST-E Math 
Standardized Score 

                      .040+ .040+ .010 .013 .013 
                      (.022) (.022) (.013) (.014) (.016) 

Teacher controls No Yes Yes Yes Yes Yes           Yes Yes Yes Yes Yes 
Course track No No Yes Yes Yes No           No  Yes Yes Yes No 
School fixed effects No No No  Yes No No           No  No  Yes No No 
School-year fixed effects No No No  No  Yes No           No  No  No Yes No 
Schl-track-yr fixed effects No No No  No  No Yes           No  No  No No Yes 
Number of unique teachers 767 767 767 686 596 516           425 425 331 248 211 
Number of unique students 53,794 53,794 53,794 48,650 39,147 30,651           24,689 24,689 19,680 12,363 9,925 
Panel C: Predicting student achievement in ninth grade biology 
WEST-B Math 
Standardized Score 

.161*** .155*** .152*** .072* .081*** .085***                     
(.033) (.033) (.032) (.028) (.018) (.017)                     

WEST-E Biology 
Standardized Score 

            .067+ .072+ .018 .038* .047*           
            (.040) (.040) (.021) (.018) (.019)           

WEST-E Science 
Standardized Score 

                      .100** .106** .010 -.002 -.005 
                      (.033) (.035) (.048) (.079) (.078) 

Teacher controls No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Course track No Yes Yes Yes Yes No No  Yes Yes Yes No No  Yes Yes Yes No 
School fixed effects No No  No  Yes No No No  No  Yes No No No  No  Yes No No 
School-year fixed effects No No  No  No Yes No No  No  No Yes No No  No  No Yes No 
Schl-track-yr fixed effects No No  No  No No Yes No  No  No No Yes No  No  No No Yes 
Number of unique teachers 185 185 185 141 113 113 92 92 48 39 39 90 90 47 25 25 
Number of unique students 15,116 15,116 15,116 11,391 8,302 8,075 6,046 6,046 3,692 2,705 2,592 5,141 5,141 3,042 1,543 1,460 
NOTE: p-values from two-sided t-test : *p<0.05, **p<0.01, ***p<0.001. All models control for prior year test scores, gender, race/ethnicity, learning disability status, and free or 
reduced-priced lunch eligibility, along with program indicators for gifted/highly capable, limited English proficiency (LEP), and special education. Teacher controls include 
experience level and degree type. Standard errors are clustered at the teacher level. 
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Table 4. Linear Probability Model of Advanced STEM Course Taking in High School  
Panel A: Middle School Math Teacher Predicting Probability of Advanced High School Math Course 

WEST-B Math Standardized Score .014 .017 .019 .012 .008 .016 
(.030) (.028) (.026) (.024) (.026) (.031) 

Teacher controls No Yes Yes Yes Yes Yes 
Course Track No No Yes Yes Yes No 
School fixed effects No No No  Yes No No 
School-year fixed effects No No No  No Yes No 
School-track-year fixed effects No No No  No No Yes 
Number of unique teachers 357 357 357 238 214 161 
Number of unique students 19,994 19,994 19,994 14,679 12,276 7,415 
Panel B: Middle School Math Teacher Predicting Probability of Advanced High School Science Course 

WEST-B Math Standardized Score .021 .023 .023 .007 .003 .002 
(.027) (.027) (.026) (.018) (.019) (.025) 

Teacher controls No Yes Yes Yes Yes Yes 
Course Track No No Yes Yes Yes No 
School fixed effects No No No  Yes No No 
School-year fixed effects No No No  No Yes No 
School-track-year fixed effects No No No  No No Yes 
Number of unique teachers 359 359 359 241 213 157 
Number of unique students 20,223 20,223 20,223 14,955 12,236 7,356 
NOTE: p-values from two-sided t-test : *p<0.05, **p<0.01, ***p<0.001. All models control for prior year test scores, 
gender, race/ethnicity, learning disability status, and free or reduced-priced lunch eligibility, along with program 
indicators for gifted/highly capable, limited English proficiency (LEP), special education, and number of advanced 
courses offered in the student's high school. Teacher controls include experience and degree type. Coefficients are 
reported as average marginal effects. Standard errors are clustered at the middle school teacher level and the high 
school level. 
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Table 5. OLS Model of Number of Advanced STEM Courses Taken in High School  
Panel A: Middle School Math Teacher Predicting Number of High School Math Courses 

WEST-B Math Standardized Score .034 .038 .045 .064 .078+ .154* 
(.057) (.053) (.050) (.042) (.047) (.082) 

Teacher controls No Yes Yes Yes Yes Yes 
Course Track No No Yes Yes Yes No 
School fixed effects No No No  Yes No No 
School-year fixed effects No No No  No Yes No 
School-track-year fixed effects No No No  No No Yes 
Number of unique teachers 357 357 357 238 214 161 
Number of unique students 19,994 19,994 19,994 14,679 12,276 7,415 
Panel B:  Middle School Math Teacher Predicting Number of High School Science Courses  
WEST-B Math Standardized Score .019 .024 .023 .014 .004 .019 

(.053) (.054) (.053) (.031) (.034) (.038) 
Teacher controls No Yes Yes Yes Yes Yes 
Course Track No No Yes Yes Yes No 
School fixed effects No No No  Yes No No 
School-year fixed effects No No No  No Yes No 
School-track-year fixed effects No No No  No No Yes 
Number of unique teachers 359 359 359 241 213 157 
Number of unique students 20,223 20,223 20,223 14,955 12,236 7,356 
NOTE: p-values from two-sided t-test : *p<0.05, **p<0.01, ***p<0.001. All models control for prior year test 
scores, gender, race/ethnicity, learning disability status, and free or reduced-priced lunch eligibility, along with 
program indicators for gifted/highly capable, limited English proficiency (LEP), special education, and number 
of advanced courses offered in the student's high school. Teacher controls include experience and degree type. 
Coefficients are reported as average marginal effects. Standard errors are clustered at the middle school teacher 
level and the high school level.  
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Figures 
Figure 1.  Average WEST-B Scores by Subtest and Testing Year 
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Figure 2. WEST-B Scores by Subtest and Teacher Type 
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Figure 3. WEST-E Scores by Subtest and Teacher Type 
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Figure 4. Basic Skills Licensure Test Passing Rates by Subtest and State 
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Figure 5. Subject-Specific Licensure Test Passing Rates by Subtest and State 
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Figure 6. Estimated Effects on Student Achievement by Sample and Quartile of WEST-B Math Score 
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Figure 7. Estimated Effects on Student Achievement by Sample, Subtest, and Quartile of WEST-E Score 
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