

Understanding the STEM Pipeline

2015 CALDER Research Conference Washington, DC

Motivation

- Stylized facts
 - Inadequate supply of Americans in STEM fields
 - Women and minorities are underrepresented
- Hypothesized Mechanisms and Policy Options
 - Lack of role models
 - Enhance hiring and support of female and minority college faculty in STEM fields
 - Negative peer effects
 - Single-sex schools

Literature

- Persistence in STEM among college students
 - Multi-campus studies
 - Bettinger and Long (2005), Bettinger (2010), Price (2010), Griffith (2010), Arcidiacono, et al. (2013)
 - Single-university studies
 - Hoffman and Oreopoulus (2009), Kokkelenberg and Sinha (2010), Carrell, Page and West (2010), Fairlie, Hoffman and Oreopoulos (2014)
 - Findings
 - Generally mixed evidence on gender role model effects, but strong positive effects in Carrell, Page and West (2010)
 - Some positive evidence on racial matching of minority students and instructors
 - First-year coursework predictive of eventual major choice

Literature

- Effects of Pre-College Experiences on Educational Attainment in STEM
 - Dee (2005, 2007)
 - racial matching at the elementary level boosts tests scores, but zero or negative effects of gender matching in middle on math and science achievement
 - Park, Behrman and Choi (2012)
 - same-sex high schools in Korea boost math entrance exam scores but have no effect on choice of a STEM major
 - Anelli and Peri (2013)
 - Increases in the proportion of women in high school classes in Milan associated with increased likelihood of selecting a STEM major in college

Contribution

- First U.S.-based study to link pre-college experiences to STEM major completion in college
- Only study to consider effects of gender/racial matching of students and teachers in middle and high school on STEM coursework and major completion in college
- Only study to evaluate influence of high school teachers' credentials on STEM college coursework and degree attainment

- Statewide administrative data from Florida
 - Four cohorts of students who began 5th grade in 1997-2000, took the 5th-grade math achievement test and enrolled in a Florida public school in grade 9
 - Can track progress in high school if they remain in a public school in Florida
 - Can determine post-secondary enrollment whether or not they remain in Florida (2 cohorts)
 - Can determine first-year coursework, college graduation and major if they attend a public university in Florida

Evidence

- Investigate the following outcomes by race, gender and family income (lunch status)
 - Pre-high school achievement
 - Dropout and achievement in high school
 - High school diploma receipt
 - Post-secondary schooling choices
 - First-Year college coursework (conditional on attending a public university)
 - College completion and major choice (conditional on attending a public university)

Normed Math Scores in Grades 5-8 by Race

(Students with a test score in grade 5 in 2000/01 who are enrolled four yea^{#CALDER2015} later in a public school in Grade 9)

Normed Math Scores in Grades 5-8 by Gender

(Students with a test score in grade 5 in 2000/01 who are enrolled four #CALDER2015 years later in a public school in Grade 9)

Normed Math Scores in Grades 5-8 by Lunch Status CALDE

(Students with a test score in grade 5 in 2000/01 who are enrolled four years later in a public school in Grade 9)

AMERICAN INSTITUTES FOR RESEARCH

High School Exit by Race

(Students with a test score in grade 5 in 1997/98-2000/01 who are enrolledfour years later in a public school in grade 9)

High School Exit by Gender (Students with a test score in grade 5 in 1997/98-2000/01 who #CALDER201 are enrolledfour years later in a public school in Grade 9) 80 70 60 Ρ enrolled g9-12 е 50 r dropped out 40 С е 30 exit to home school or n private school t 20 exit - other 10 0 male female Gender

High School Exit by Lunch Status

(Students with a test score in grade 5 in 1997/98-2000/01 who are enrolled four years later in a public school in Grade 9)

GeorgiaState University

1111

ANDREWYOUNG SCHOOL

OF POLICY STUDIES

Regular High School Diploma Receipt Within 5 Years of Entering Grade 9 by Race

(Students with a test score in grade 5 in 1997/98-2000/01 who are enrolled four years later in a public school in Grade 9)

AMERICAN INSTITUTES FOR RESEARCH

University

1111

Regular High School Diploma Receipt Within 🚺 5 Years of Entering Grade 9 by Gender

(Students with a test score in grade 5 in 1997/98-2000/01 who are enrolled four years later in a public school in Grade 9)

Regular High School Diploma Receipt Within 🚺 5 Year of Entering Grade 9 by Lunch Status (Students with a test score in grade 5 in 1997/98-2000/01 who are enrolled

four years later in a public school in Grade 9)

College Attendance in Year Immediately Following Receipt of High School Diploma by Race (Students with a test score in grade 5 in 1997/98 who are enrolled four years later in a public school in grade 9 and graduate within 5 years with a regular diploma)

College Attendance in Year Immediately Following Receipt of High School Diploma by Gender

(Students with a test score in grade 5 in 1997/98 who are enrolled four years later in a public school in grade 9 and graduate within 5 years with a regular diploma)

College Attendance in Year Immediately Following Receipt of High School Diploma by Lunch Status Idents with a test score in grade 5 in 1997/98 who are enrolled four years

(Students with a test score in grade 5 in 1997/98 who are enrolled four years later in a public school in grade 9 and graduate within 5 years with a regular diploma)

Determinants of Taking One or More Courses in a STEM Field in the First Year of College

VARIABLES	(1)	(2)	(3)	(4)
Black	0.0320**	0.0338**	0.0323**	0.0324**
	(0.0036)	(0.0039)	(0.0042)	(0.0046)
Hispanic	0.0540**	0.0553**	0. 0557**	0.0570**
	(0.0033)	(0.0034)	(0.0035)	(0.0037)
Asian	0.0293**	0.0301**	0.0283**	0.0267**
	(0.0056)	(0.0057)	(0.0058)	(0.0060)
Other Race	0.0172	0.0177	0.0096	0.0109
	(0.0177)	(0.0177)	(0.0189)	(0.0195)
Female	-0.0370**	-0.0369**	-0.0368**	-0.0360**
	(0.0027)	(0.0028)	(0.0029)	(0.0030)
Control for Lunch Status		\checkmark	\checkmark	\checkmark
Control for HS Math Scores			\checkmark	\checkmark
Control for MS Math Scores				\checkmark
Observations	74,528	74,528	71,113	67,424
Psuedo R ²	0.0090	0.0090	0.0091	0.0090

Determinants of Taking One or More Courses in Specific Science Subjects in the First Year of College

VARIABLES	Any Science	Biology	Chemistry	Physics	
Black	0.0527**	0.0208**	0.1212**	-0.0032	
	(0.0061)	(0.0055)	(0.0061)	(0.0020)	
Hispanic	0.0982**	0.0304**	0.1177**	0.0054**	
-	(0.0052)	(0.0049)	(0.0052)	(0.0017)	
Asian	0.0721**	0.0749**	0.1626**	0.0097**	
	(0.0082)	(0.0081)	(0.0084)	(0.0027)	
Other Race	0.0000	-0.0231	0.0398	-0.0024	
	(0.0267)	(0.0229)	(0.0251)	(0.0074)	
Female	-0.0110**	0.0616**	-0.0048	-0.0312**	
	(0.0040)	(0.0034)	(0.0034)	(0.0014)	
Control for Lunch Status	\checkmark	\checkmark	\checkmark	\checkmark	
Control for MS Math Scores	\checkmark	\checkmark	\checkmark	\checkmark	
Control for HS Math Scores	\checkmark	\checkmark	\checkmark	\checkmark	
Observations	67,424	67,424	67,424	67,424	
Psuedo R ²	0.0060	0.0144	0.0294	0.1401	

Determinants of Taking One or More Courses in a STEM Field in the First Year of College

VARIABLES	(1)	(2)	(3)
Female x Prop. MS/HS Math & Sci. Courses	0.0653**		0.0514**
Taught by a Female Teacher	(0.0116)		(0.0142)
Black x Prop. MS/HS Math & Sci. Courses	-0.0648**		-0.0692**
Taught by a Black Teacher	(0.0206)		(0.0234)
Hispanic x Prop. MS/HS Math & Sci. Courses	0.1560**		0.1640**
Taught by a Hispanic Teacher	(0.0185)		(0.0123)
Enrolled in at Least One HS Biology Course		0.0132*	0.0124*
Taught by a Teacher with a BA in Biology		(0.0059)	(0.0059)
Enrolled in at Least One HS Chemistry Course		0.0236**	0.0214**
Taught by a Teacher with a BA in Chemistry		(0.0073)	(0.0074)
Enrolled in at Least One HS Physics Course		-0.0104	-0.0118
Taught by a Teacher with a BA in Physics		(0.0121)	(0.0122)
Enrolled in at Least One HS Math Course Taught		0.0134**	0.0144**
by a Teacher with a BA in Math		(0.0051)	(0.0050)
Controls for Race/Ethnicity & Gender	\checkmark	\checkmark	\checkmark
Control for Lunch Status	\checkmark	\checkmark	\checkmark
Control for Grade 5 and MS Math Scores	\checkmark	\checkmark	\checkmark
Observations	69,978	49,639	49,634
Psuedo R ²	0.0108	0.0103	0.0121

Determinants of Earning a Bachelor's Degree in a STEM Major Within 9 Years of Starting Grade 9

VARIABLES	(1)	(2)
Black	-0. 0377**	0.00079
	(0.0020)	(0.0031)
Hispanic	-0.0097**	0.0072**
	(0.0022)	(0.0025)
Asian	0.0491**	0.0405**
	(0.0049)	(0.0046)
Other Race	-0.0110	0.0016
	(0.0107)	(0.0121)
Female	-0.0497**	-0.0262
	(0.0020)	(0.0018)
Control for Lunch Status		\checkmark
Control for MS/HS Math Scores		\checkmark
Observations	75,292	68,093
Psuedo R ²	0.0335	0.1093

Relationship Between First-Year-in-College STEM Instructors and Earning a Bachelor's Degree in Specific STEM Majors Within 9 Years of Starting Grade 9

VARIABLES	STEM	Math	Chemistry	Physics	Bio. Sci.	Engineering
Female x Proportion of First- Year College STEM Courses Taught by a Female Instructor	-0.0190** (0.0039)	-0.0010 (0.0005)	-0.0009 (0.0008)	0.0002 (0.0003)	-0.0033** (0.0010)	-0.0068** (0.0019)
Black x Proportion of First-Year College Courses Taught by a Black by a Black Instructor	-0.0662** (0.0154)	-0.0011 (0.0020)	-0.0037 (0.0032)		-0.0018 (0.0033)	-0.0132 (0.0071)
Hispanic x Proportion of First- Year College Courses Taught by an Hispanic Instructor	-0.0210** (0.0080)	-0.0001 (0.0012)	0.0001 (0.0015)	0.0009* (0.0004)	-0.0002 (0.0027)	-0.0068* (0.0031)
Controls for MS/HS Math & Sci. Teacher-Student Match	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Controls for Race/Ethnicity & Gender	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Control for Lunch Status	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Control for MS/HS Math Scores	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Observations Psuedo R ²	65,458 0.1727	65,458 0.1594	65,458 0.1388	54,715 0.2046	65,458 0.0692	65,458 0.2781

Conclusions

- For blacks and Hispanics, significant "leakage" before college
 - need to tackle achievement gaps that occur as early as elementary school
- For those who make it to college, ability/willingness of blacks and Hispanics to take STEM courses in college does not appear to be a problem
- Female freshman college students less likely to take courses in physical sciences
 - STEM course-taking is higher the greater the exposure to female math and science teachers in middle/high school

Conclusions

- Having a high school math or science teacher with a degree in the relevant subject appears to boost the likelihood of taking STEM courses as a college freshman
- First-year college coursework is predictive of eventual attainment of a BA in a STEM field
- Black and Hispanic college students are less likely than whites to earn a BA in a STEM field, but differential is eliminated if account for prior achievement and family income
- Female freshman college students less likely to take courses in physical sciences
 - STEM course-taking is higher the greater the exposure to female math and science teachers in middle/high school

Next Steps

- Address possible endogeneity of teacher characteristics
 - Use faculty composition as an instrument
 - Include HS fixed effects
- Include classroom composition data to analyze peer effects
- Expand sample to include students who start their post-secondary careers in community colleges

