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Abstract 

We present new estimates of the importance of teachers in early grades for later grade 
outcomes, but unlike the existing literature that examines teacher “fade-out,” we directly 
compare the contribution of early-grade teachers to later year outcomes against the 
contributions of later year teachers to the same later year outcomes. Where the prior literature 
finds that much of the contribution of early teachers fades away, we find that the contributions 
of early-year teachers remain important in later grades. The difference in contributions to 
eighth-grade outcomes between an effective and ineffective fourth-grade teacher is about half 
the difference among eighth-grade teachers. The effect on eighth-grade outcomes of replacing a 
fourth-grade teacher who is below the 5th percentile with a median teacher is about half the 
underrepresented minority (URM)/non-URM achievement gap. Our results reinforce earlier 
conclusions in the literature that teachers in all grades are important for student achievement.  
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1. Introduction

Students typically spend 13 years in K–12 education. Although there are important
outcomes realized in early years, society is also concerned with longer term academic results. 
Teachers are generally considered to be the most important schooling resource, based on an 
abundance of evidence on their effects on both short-run test (e.g., Aronson et al., 2007; 
Goldhaber et al., 1999; Rivkin et al., 2005) and non-test (Jackson, 2018; Kraft, 2019) outcomes 
as well as longer term outcomes, such as high school graduation, college going, and labor market 
participation and earnings (Chetty et al., 2014).1 Indeed, teachers are so important that, according 
to one estimate, a child in poverty who has a good teacher for 5 years in a row would have 
learning gains large enough, on average, to close completely the achievement gap with higher 
income students (Hanushek et al., 2005). At the same time, there is abundant evidence that much 
of the teacher contribution to student test-score gains largely fades out within just a grade or two 
(e.g., Jacob et al., 2010; Kane & Staiger, 2008; Kinsler, 2012; Konstantopoulos & Chung, 2011; 
Master et al., 2017; Rothstein, 2010). How can these seemingly divergent findings be 
reconciled? 

We argue that the reason existing literature finds a very large degree of fade-out is due to 
the choice of benchmark. Essentially, the finding is that even when a teacher’s contribution to 
student tests is large in their own grade, the majority of that contribution appears to be gone by 
the time students take tests in later grades. Thus, measures of fade-out in the existing literature 
compare the performance of an early-year teacher’s students on tests given in the teacher’s own 
grade to the performance of those students on a test given in a later year that is still detectible in 
terms of student test scores. This drop in apparent teacher contributions measured at late versus 
early years has been labeled “fade-out.” The inference is that much of what the “unusually good” 
early-year teacher imparted has been lost by later years. The conclusion is that even excellent 
early-year teachers are not all that important if we care about long-run outcomes. This 
conclusion has implications for teacher accountability, pay, and how we think about investments 
in early-grade teachers (Leonhardt, 2010).  

But the fade-out findings suggesting that investment in teachers may not have much of a 
long-run return also contradict the evidence that looks directly at long-term outcomes (e.g., 
Chetty et al., 2014). To the extent that we care about outcomes at or close to when students leave 
school, the fade-out findings might suggest that the importance of the teacher contribution had 
been much exaggerated, at least for early-year teachers. The fade-out literature has, to 
oversimplify, estimated value-added for teachers using both late-grade and early-grade tests and 
then regressed the former on the latter, using careful adjustments for a variety of econometric 

1 In turn, these teacher-quality effects are estimated to have consequential impacts on individual and aggregate 
economic well-being. Chetty et al. (2014), for instance, estimate that having a teacher with a 1 SD higher value-
added adds about $230,000 in the present value of lifetime earnings to the students in that teacher’s class.  
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issues. A string of influential papers (described in Section 2) finds that much of the contribution 
of early-grade teachers to test achievement is no longer detectible in terms of later grade student 
test scores. But a key issue with this approach to measuring the fade-out of teacher effects is that 
a teacher in Grade t could have large effects on student achievement in, for example, Grade t+2 
relative to Grade t+2 teachers even if it is a small effect relative to the impact that the teacher has 
on Grade t student achievement.  
 

In our view, early-year test scores are the wrong benchmark for consideration of long-run 
results. We take a student’s performance on a late-year test and divide it up among the teachers 
the student had in that late year and the student’s early-year teacher and all the teachers in 
between. We then compare the contributions of early-year teachers to the contributions of late-
year teachers on the late-year outcomes. While the contributions of early-year teachers on long-
run outcomes are smaller than those of late-year teachers, they remain substantial. In other 
words, the findings in the literature that early-grade teachers are important is supported by our 
empirical estimates. 

 
The key to understanding why we get different results is the realization that the skills 

tested at various grade levels changes across grades and that not all material that we care about is 
tested. Suppose some fourth-grade teachers are effective at helping students memorize 
multiplication tables while, in contrast, other fourth-grade teachers foster in their students the 
ability to figure out more abstract mathematical concepts. Early-year tests check the ability to 
multiply but don’t test “loving math.” Eighth-grade tests, in turn, don’t test the times tables but 
do test algebra—learning algebra being aided by an understanding of more abstract concepts. 
The students of the first teacher score well on the early test but not the later test, and vice versa 
for the students of the second teacher. In contrast, we compare eighth-grade test results for the 
students of fourth-grade teachers to those of the students of eighth-grade teachers, which is an 
apples-to-apples comparison. 

 
The standard way to ask whether a good teacher contributes much more than a weak 

teacher is to look at the distribution of teacher effects and ask whether the dispersion is “large.” 
Specifically, we look at the distribution of eighth-grade teacher effects (on eighth-grade tests) 
and the distribution of fourth-grade teacher effects (again on eighth-grade tests). The first 
measures we compare are the standard deviations of the two distributions. Not only is the fourth-
grade standard deviation a substantial fraction of the eighth-grade standard deviation, but the 
fourth-grade standard deviation is also large compared to the underrepresented 
minority/nonminority (URM/non-URM) gap.  
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We also present other measures, such as the “Hanushek question” of what happens when 
a teacher in the tail of the distribution is replaced with an average teacher.2 That the tails of the 
distributions in Figure 1 are leptokurtic (as we describe later on) is quite important for this type 
of policy, because the heavy tails mean that the estimates of the effects of policies aimed at the 
tails of the teacher distribution are greater than estimates that assume that effectiveness is 
normally distributed. We use a kernel-smoothing algorithm developed by Delaigle and Meister 
(2008) and Delaigle et al. (2008) that allows us to make nonparametric estimates of the ability 
distribution appropriately adjusted for measurement error. As an example, using our estimates of 
teacher effectiveness while assuming normality, retaining a 95th-percentile fourth-grade teacher 
has about one third of the effect on eighth-grade outcomes as does retaining a 95th-percentile 
eighth-grade teacher. However, using our nonparametric estimates, the relative importance rises 
from one third to 70%. 

 
We find results quite similar to those found by earlier researchers when we use our data 

and their methods, but less fade-out of teacher effects on later grade test scores. In particular, 
while studies that focus specifically on teacher fade-out find that only about a quarter of tested 
learning persists into the following year (e.g., Jacob et al., 2010) and 14% to19% persists two 
grades later (Kinsler, 2012; Jacob et al., 2010), we find that the variation in eighth-grade 
outcomes contributed by fourth-grade teachers is about 45% of that contributed by eighth-grade 
teachers. This conclusion is readily apparent in Figure 1, which shows the distribution of fourth- 
to eighth-grade teacher contributions to end-of-year student eighth-grade test scores. The 
dispersion of the eighth-grade teachers is greater than that of earlier grade teachers, but it is also 
true that the earlier grade teacher distributions represent a large fraction of the eighth-grade 
teacher variation. 

 
Before turning to our model, we provide a brief review of the literature, with an emphasis 

on how our estimates are related to what has been done in the past. We then describe the data and 
explain our methodology, followed by a more detailed discussion of the results and a conclusion. 

2. Models and Related Literature 

A standard finding in the literature is that teachers are the most important schooling 
variable influencing short-run (i.e., year to year) gains in students’ test achievement (e.g., 
Aaronson et al., 2007; Goldhaber et al., 1999; Rivkin et al., 2005). There is also evidence that 
teachers influence longer run outcomes, such as postsecondary schooling and labor market 
earnings (Chamberlain, 2013; Chetty et al., 2014). Thus, it is somewhat puzzling that researchers 
exploring the extent to which teacher impacts on test scores in one grade persist into later grades 

 
2 Hanushek (2011), for instance, has estimated that replacing the bottom 5%–8% of teachers with average teachers 
could increase the aggregate GDP of the United States by a present value of $100 trillion.  
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find that a significant portion of teacher effects on student tests in early grades cannot be 
detected in later grades—that is, that they appear to “fade out.”3 

 
A number of studies focus on assessing the contribution of teachers in Grade t compared 

with later grades (t+1, t+2, etc.) by including lagged value-added estimates or teacher indicators 
directly in student achievement models and assuming a constant rate of decay of teacher effects 
(e.g., Kane & Staiger, 2008; Konstantopoulos & Chung, 201l; Lockwood et al., 2007; Rothstein, 
2010). These studies find year-to-year persistence in the range of 0.2 to 0.5. Importantly, 
however, the approach to measuring persistence in of all of the studies is to compare the 
contribution that teachers make to student achievement in Grade t relative to their contribution to 
student achievement in some later grade.4 
 

We begin by providing some intuition (and formalize it further on) about challenges 
inherent in measuring how much knowledge students have as they advance from grade to grade 
(Rose, 2021). Figure 2 illustrates that student learning in one grade builds on a foundation of the 
concepts taught in prior grades but also that what is taught in one grade may not be well 
measured by end-of-grade tests (Ballou, 2009; Koretz, 2009). In the figure, note that the size of 
the box of material covered by tests (the area inside of the dashed boxes) is, by assumption, 
consistent across grades. But the amount of knowledge expands from grade to grade, so the share 
of total knowledge that is tested declines as students advance from one grade to the next. Note 
also that some knowledge taught in early grades may be covered by early-grade tests but not later 
grade tests.5 Finally, the figure depicts the fact that the contributions to knowledge or skills made 
by teachers in early grades may not be tested in those grades, despite being important for 
learning that occurs in later grades and is tested.6 Consequently, comparing the effects of 
teachers based on their contributions to learning assessed by Grade 𝑡𝑡 tests and comparing that to 
the learning associated with early-grade teachers that is identified by later grade tests may miss 
contributions. In particular, given that any domain of knowledge expands as students progress 
from grade to grade and the fact that tests (indicated by the white dashed boxes) can only sample 
from this domain of knowledge, later grade tests are likely to be a relatively smaller sample of 
accumulated knowledge and thus will less accurately assess the full breadth of students’ 

 
3 As an example, if only half the contribution of a teacher persists into the following grade and if later fade-out is 
geometric, then even the nation’s best teacher will have contributed virtually nothing to outcomes by their students’ 
high school graduation. 
4 For a related study of persistence of teacher effects at the college level, see Carrell and West (2010). 
5 In Figure 2, the Grade t+2 tests only cover a small portion of the material from Grade t (the portion inside the 
green-shaded dashed box in Grade t+2).  
6 In Figure 2, the solid boxes in Grades t+1 and t+2 that are in the green-shaded areas represent material not covered 
by the Grade t test, which is covered by later grade tests. To be more concrete, the contribution of teachers in fourth 
grade who provide students with a solid foundation in understanding factors in the fourth grade will show up on tests 
that cover fractions in the sixth grade. But, on the other hand, identifying the names of particular shapes (e.g., a 
triangle), another typical fourth-grade skill, may not show up on sixth-grade tests; consequently, the contribution of 
a teacher who helps students understand shape identification may appear on fourth-grade tests but not sixth-grade 
tests. For more information on skills that may be taught in different grades, see http://www.corestandards.org/Math/. 

http://www.corestandards.org/Math/


 
 

5 

knowledge. And, as Cascio and Staiger (2012) point out, observed teacher fade-out (or fade-out 
of any educational intervention) could be an artificial consequence of how tests are scaled.7 
 

We describe this aspect more formally in Equation 1, borrowing elements from a 
framework described in Jacob et al. (2010).8 Their basic model is  
 
 𝜏𝜏𝑡𝑡′ = 𝜆𝜆𝜏𝜏𝑡𝑡 + 𝜀𝜀𝑡𝑡 (1) 

where 𝜏𝜏𝑡𝑡′ is the average Year 𝑡𝑡′ value-added score of students who had a particular teacher in 
Year 𝑡𝑡 and 𝜏𝜏𝑡𝑡 is that value-added associated with that teacher. Jacob et al. (2010) use an 
instrumental variable approach that corrects for 𝜏𝜏𝑡𝑡 being a generated regressor that contains 
measurement error. The authors also provide an estimate of 2-years-apart persistence that shows 
further fade-out, but at a rate slower than geometric. 

 
We extend the theoretical framework presented in Jacob et al. to illustrate two issues: 

(a) that our measure of fade-out is conceptually different than what has been previously 
estimated and (b) that there is a particular reason why estimates that focus on the dynamics of 
measured value-added may overstate fade-out. Since the objective is to provide intuition, we 
assume here that there are only two grades—fourth and eighth, although the empirical model 
includes the intervening grades—and a very limited set of skills.  

 
Fourth-grade teachers impart three skills—memorizing multiplication tables (subscript 

𝑀𝑀), loving math (subscript L), and good study skills (subscript S)—in amounts 𝜏𝜏𝑀𝑀4 , 𝜏𝜏𝐿𝐿4 ,
and 𝜏𝜏𝑆𝑆4 as shown in Equation 2. Eighth-grade teachers impart skills in algebra (subscript A), 
loving math, and good study skills but do not teach multiplication. 

 
All components last forever, and all components are mutually independent (to simplify 

the exposition) within and across grades. Let us assume that (a) in the fourth-grade loving math 
does not contribute to memorizing multiplication tables but does contribute in the long run to 
learning algebra (an eighth-grade skill) and that (b) fourth-grade tests examine only 
multiplication whereas eighth-grade tests examine only algebra,9 but study skills help students in 
both grades. 

 
7 Cascio and Staiger explore this issue of the test domain-related fade-out (i.e., whether fade-out appears because of 
changes in the variance of test scores as students advance through school). They do find some evidence of this 
source of fade-out but conclude that the increased test-score variance explains relatively little of the empirically 
observed diminishment of early schooling interventions, such as having a very effective or ineffective teacher. As 
we describe further on in this article, because our preferred measure of fade-out is only based on late-grade tests 
(where traditional measures compare tests instruments across grades), our measure should not be at risk from this 
type of scaling issue.  
8 Jacob et al. (2010) describe how the persistence of long-term teacher effects can be recovered through instrumental 
variable estimation of student achievement and estimate that only about 0.20–0.25 of teacher effects persist after 1 
year. 
9 This is, thus far, conceptually equivalent to the Jacob et al. (2010) “short-term” and “long-term” knowledge. 
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Ignoring other factors that will influence student achievement, a test score at the end of 

fourth grade will be 

𝑦𝑦4 = 𝜏𝜏𝑀𝑀4 + 𝜏𝜏𝑆𝑆4 
and a test score at the end of eighth grade will be 

𝑦𝑦8 = 𝜏𝜏𝐴𝐴8 + 𝜏𝜏𝐿𝐿8 + 𝜏𝜏𝑆𝑆8 + 𝜏𝜏𝐿𝐿4 + 𝜏𝜏𝑆𝑆4 
If we regress the latter on the former, we get 

𝜎𝜎𝑆𝑆4
2

𝜎𝜎𝑀𝑀4
2 + 𝜎𝜎𝑆𝑆4

2  

 
(2) 

Even though love of learning imparted in fourth grade persists, it does not show up in the 
numerator because this skill is not picked up on the fourth-grade test and therefore does not 
contribute to measured fourth-grade value-added. And the converse is also possible: Knowledge 
that teachers contribute to students in the fourth grade that is covered by fourth-grade tests may 
not be covered by eighth-grade tests (e.g., multiplication tables) directly or indirectly through an 
assessment of student skills that build upon the earlier foundation of knowledge.10 In light of this 
possibility, we note that to the extent that there are skills taught in fourth grade that are not tested 
in eighth grade, our estimates will be too conservative in estimating the importance of early-year 
teachers. 

 
In our approach, we allocate eighth-grade outcomes among the contributing teachers. 

Eighth-grade teachers are credited with 𝜏𝜏𝐴𝐴8 + 𝜏𝜏𝐿𝐿8 + 𝜏𝜏𝑆𝑆8 , and fourth-grade teachers are credited 
with 𝜏𝜏𝐿𝐿4 + 𝜏𝜏𝑆𝑆4. Our measure compares the relative contributions (Exhibit 3).11 

𝜎𝜎𝐿𝐿4
2 + 𝜎𝜎𝑆𝑆4

2

𝜎𝜎𝐴𝐴8
2 + 𝜎𝜎𝐿𝐿8

2 + 𝜎𝜎𝑆𝑆8
2  (3) 

If one is concerned about the contribution of early-year teachers to later learning, 
Equation 3 provides the correct conceptual measure. But note also that the fraction in Equation 3 
may be either larger or smaller than the fraction in Equation 2. Thus, it may be that one reason 
for our finding of persistence greater than has been previously reported is that early-year teachers 
impart important skills that are only measured in future years. Indeed, as we show in Appendix 

 
10 Note that our Equation 2 is conceptually similar to Jacob and colleagues’ Equation 12 (2010; p. 921) in that it is 
comparing the ratio of the contributions that fourth-grade teachers make toward material tested in the eighth grade 
(the numerator) to the combination of the contributions that fourth-grade teachers make to fourth- and eighth-grade 
tested material (the denominator).  
11 And note that because we are only using eighth-grade test outcomes, we sidestep the test scaling issue identified 
in Cascio and Staiger (2012). 
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A, when we employ the Jacob et al. (2010) approach to measuring teacher fade-out, we find 
results that closely parallel theirs. 
 

Earlier work derives teacher effects by regressing student test scores in Grade t on teacher 
indicator variables and controls, including student test scores in Grade t–1. A notable exception 
is Kinsler (2012), who uses an approach more closely related to what we do. Illustrating 
Kinsler’s method with only two grades (Equation 4), 

 

𝑦𝑦8 = � 𝜏𝜏𝑗𝑗8
8 𝐼𝐼𝑗𝑗8

𝑗𝑗8∈𝐽𝐽8
+ 𝜆𝜆 � 𝜏𝜏𝑗𝑗4

4 𝐼𝐼𝑗𝑗4
𝑗𝑗4∈𝐽𝐽4

 

𝑦𝑦4 =                            � 𝜏𝜏𝑗𝑗4
4 𝐼𝐼𝑗𝑗4

𝑗𝑗4∈𝐽𝐽4
 

(4) 

One can think of Equation 4 as using the second part to identify early-year teacher value-
added, which is then “fed into” the first part, identifying 𝜆𝜆. The value 𝜆𝜆, which provides the 
traditional measure of how early-year knowledge remains in later years, is derived from an 
estimate, with fourth-grade value-added on the right, so the same issues as in Equation (2) 
exists.12 

 
Our specification is essentially the first part of Equation 4 (see Equation 5) but without 

forcing fourth-grade teacher-effect estimates to reflect early as well as later outcomes and 
without the 𝜆𝜆 parameter that assumes constant decay: 

𝑦𝑦8 = � 𝜏𝜏𝑗𝑗8
8 𝐼𝐼𝑗𝑗8

𝑗𝑗8∈𝐽𝐽8
+ � 𝜏𝜏𝑗𝑗4

4 𝐼𝐼𝑗𝑗4
𝑗𝑗4∈𝐽𝐽4

 

 
(5) 

 
We replace estimation of fourth-grade teacher effects on fourth-grade scores with the 

estimation of fourth-grade teacher effects on eighth-grade scores and then compare the 
distributions of 𝜏𝜏8 and 𝜏𝜏4, thus avoiding the issues described earlier. If the dispersion of teacher 
fixed effects for early-year teachers is small (compared to the dispersion for current-year 
teachers), then it makes relatively little difference whether a student has a good or bad teacher 
early on—the reverse being true if the dispersion among early-year teachers is relatively large. 
We would interpret the former case as one of substantial “fade-out.” 

𝑦𝑦8 = � 𝜏𝜏𝑗𝑗8
8 𝐼𝐼𝑗𝑗8

𝑗𝑗8∈𝐽𝐽8
+ � � 𝜏𝜏𝑗𝑗𝑔𝑔

𝑔𝑔 𝐼𝐼𝑗𝑗𝑔𝑔
𝑗𝑗𝑔𝑔∈𝐽𝐽𝑔𝑔𝑔𝑔∈𝐺𝐺

+ 𝑋𝑋𝑋𝑋 (6) 

 
12 But continuing along with our simplified example, the estimates of fourth-grade value-added will be influenced by 
𝜏𝜏𝑀𝑀4 in the upper equation but not in the lower one. So, some element of 𝜎𝜎𝑀𝑀4

2  will be picked up. 
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Equation (6) is extended from the previous specification. We measure previous teacher-
grade effects on eighth-grade student scores by including all of the earlier teacher dummies, 𝐼𝐼𝑗𝑗𝑔𝑔. 
For each Grade 4–8, we acquire a set of teacher effects, 𝜏𝜏𝑔𝑔. Importantly, 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 includes third-
grade math test scores as well as student characteristics (gender, learning disability status, gifted, 
free or reduced-priced lunch [FRL] eligibility, URM status, Asian-Pacific Islander indicator, and 
participation in special education and English learner programs). The standard errors for each 
teacher-grade effectiveness are obtained by bootstrapping.  

 
Equation (6) implicitly assumes that the impact of teachers on student achievement in one 

grade does not affect the assignment of students to subsequent teachers. This may be 
implausible. In the Section 5 (on robustness), we present Monte Carlo evidence that suggests that 
our estimates are conservative. 

3. Data, Sample, and Measurement Issues 

For our analyses, we use administrative data on individual public school students and 
teachers in Grades 4–8 provided by the Washington State Office of Superintendent of Public 
Instruction. This data include nine cohorts of students who began in fourth grade in the 2006–07 
through 2014–15 school years, who could be followed to their eighth-grade year, and for whom 
there was information about their mathematics test achievement in third grade.13 The data also 
contain detailed information on individual student background variables, including gender; 
race/ethnicity; learning disability status; FRL eligibility; and participation in gifted/highly 
capable, limited English proficiency, and special education programs. These student-level 
variables (for students when they are in the third grade) are used as control variables in the 
value-added models described earlier. 

We include students who match with exactly one math teacher in each grade and school 
year and eliminate students with missing background information.14 Between 2006–07 and 
2008–09, we link students in Grades 4–6 in elementary schools to their classroom teachers 
through a proctor field in the state assessment file, but in the 2009–10 school year, students can 

 
13 Students were tested based on either the Washington Standards of Student Learning (WASL), the Measures of 
Academic Progress (MAP), or the Smarter Balanced Assessment (SBA), depending on the year. The WASL was the 
state assessment used in the 2005–06 to 2008–09 school years, and the MAP was used in 2009–10 to 2013–14, 
when it was replaced by the SBAC test, which is still used. The SBA test was designed to be computer adaptive, but 
the WASL and MAP tests were not. About one third of schools in the state participated in a pilot of the SBA in 
2013–14, and the state did not collect test scores from students in these schools for this school year. Thus, current 
test scores are missing for students in these schools in 2013–14, and prior test scores are missing for students in 
these schools in 2014–15. 
14 As an alternative approach to eliminating students with missing information, we impute values for each variable 
and create missing indicators. The findings on teacher effectiveness that we report further on in this article are quite 
similar to those with missing values imputed. We are happy to provide these results upon request. 
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be linked to their teachers using a unique classroom ID in the state’s Comprehensive Education 
Data and Research System (CEDARS) database.15 

 
Because we are regressing eighth-grade student achievement on multiple grades of 

teacher indicators, it is important to identify whether these teachers are networked together in the 
sense that they share common support; if they do not, then the teacher effects are not fully 
identifiable (that is, one cannot distinguish the effects in one group of networked teachers from 
the effects of teachers in a different independent network; Reardon & Raudenbush, 2009). 
Moreover, sparsely connected networks can lead to biased teacher-effect estimates (Jochmans & 
Weidner 2019).16 To satisfy the necessity and sufficiency of identification conditions (Abowd et 
al., 2002) on estimating multiple high-dimensional fixed effects, we sample the largest group of 
teachers who are connected by students.17 We then estimate teacher-grade effects based on the 
largest connected estimable group.18 Figure 3 demonstrates some intuition about connected 
groups. The left panel of the figure shows the teachers that students are assigned to, represented 
by letters, as they progress from grade to grade (each column is a grade). The right portion of the 
figure shows how the progression of students to different teachers creates three distinct 
connected groups. Specifically, each vertex represents a single teacher in a grade, and each edge 
represents the connection of teachers through the students who they have in their classrooms 
(i.e., two teachers are connected if and only if students from the early-grade teacher feed into the 
adjacent later teacher’s classroom). Therefore, we obtain the groups based on the teacher 
connectivity and student mobility in Grades 4–8.  

 
After we restrict the data based on connectedness, about 61% of students and 85% of 

teachers remain within the sample. Specifically, we have a sample of 173,858 unique students 
and 620,499 teacher-year observations (15,981 unique teachers). Table 1 provides descriptive 
statistics for students. Column 1 are for the largest connected group of teachers (and for whom 
we have third-grade math scores (which are standardized across all third graders in any 
connected group). Column 2 includes students who are not in the largest connected group of 
teachers. And Column 3 is the difference across these two mutually exclusive categories. 

 
15 Note that the “proctor” variable was not intended to be a link between students and their classroom teachers, so 
this link may not accurately identify those classroom teachers, and while the Comprehensive Education Data and 
Research System (CEDARS) data include fields designed to link students to their individual teachers, based on class 
schedules, the limitations of reporting standards and practices across the state may result in ambiguities or 
inaccuracies around these links. 
16 This issue also arises in other educational contexts, such as when trying to estimate the effects of school principals 
(Bartanen & Husain, 2021) and teacher education programs (Mihaly et al., 2013). 
17 For the algorithm for determining a connected subset, we refer to the note of Weeks and Williams (1964). This 
algorithm finds connected components in which all differences between teacher-grade effects are estimable. The 
largest connected group is recommended and usually is sufficiently large for proper analysis.  
18 We use a computationally efficient method introduced by Gaure (2013) to estimate high-dimensional fixed effects 
(i.e., teacher-grade effects) using ordinary least squares after the largest connected estimable group has been 
selected. Note that the largest estimable group contain sufficiently large samples to estimate teacher-grade effects. 
The standard errors of fixed effects are obtained through bootstrap. 
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Students in the largest connected group are far more likely to be advantaged according to their 
third-grade test scores or FRL status,19 and they are far less likely to be students of color. This is 
not surprising given that students who are more mobile tend to be more disadvantaged 
(Goldhaber et al., 2021), have poorer academic outcomes, and are less likely to be in the sample 
given that they have to have both third- and eighth-grade tests to be included.20 

 
We use the connected sample just described to estimate the teacher value-added models 

(according to Equation (6)). The resulting teacher-grade value-added estimates, 𝜏̂𝜏𝑗𝑗𝑔𝑔 , are noisy in 
that they include sampling error (Jacob & Lefgren, 2008; Kane & Staiger, 2008). We first follow 
standard practice and make an empirical Bayes correction to the estimated distribution of teacher 
value-added estimates. To remove the sampling error from the variance of estimated teacher-
grade effects, we first estimate the values of 𝜎𝜎�𝑗𝑗g, the standard errors on 𝜏̂𝜏𝑗𝑗𝑔𝑔, using the parametric 

bootstrap.21 Then we remove the average sampling error, 1
𝑛𝑛
∑𝜎𝜎�𝑗𝑗g

2, from the variance of 𝜏̂𝜏𝑗𝑗𝑔𝑔, 
where n is the number of teachers in each Grade g. Finally, we get the corrected spread Σ of the 
density of teacher-grade effects from the following (Exhibit 7): 

Σ =  �𝑣𝑣𝑣𝑣𝑣𝑣� 𝜏̂𝜏𝑗𝑗𝑔𝑔� −
1
𝑛𝑛
�𝜎𝜎�𝑗𝑗g

2 

 

(7) 

Importantly, the standard approach is to adjust the teacher effectiveness distribution, 
assuming that it is Gaussian. Goldhaber and Startz (2017) suggest that for a number of data sets, 
departures from normality are not substantively important. But Gilraine et al. (2021) reach a 
different conclusion, finding that some value-added estimates from some data sets are 
approximately Gaussian whereas other data sets give substantively non-Gaussian results. 

As we show in the following section, our estimates of the distribution of teacher value-
added are highly non-Gaussian.22 Thus, we also employ a nonparametric estimator (Delaigle et 
al., 2008; Delaigle & Meister, 2008), which provides a kernel-smoothing estimate that corrects 

 
19 Note that we standard normalize student test scores within grade and year so that the difference between Columns 
1 and 2 in tests represents the average placement in the third-grade math distribution for students who are in the 
connected group and nonconnected groups. 
20 While we do not report it, the teachers in the connected sample also differ from those who instruct students in 
math but are not in the connected sample. In particular, they have somewhat higher levels of teaching experience. 
Again, this is not surprising given that teachers are more likely to be connected with each other through students 
when they spend more time in the state’s teacher labor market. 
21 We employ a parametric bootstrap to keep the connectedness in each iteration. We also perform a clustered 
bootstrap within the eighth-grade classroom. The clustered bootstrap has smaller average standard errors in each 
grade than does the nonclustered bootstrap, which implies that the empirical Bayes corrected teacher value-added 
distributions we utilize are more conservative than using clustering. 
22 The p values for the Jarque-Bera test for normality are 0 to all reported decimal places. While the distributions are 
roughly bell-shaped, the deviation from normality is large enough to matter for policy questions such as replacing 
teachers in the lower tail. When we account for the role of measurement error in estimated teacher effects (see 
results in Section 4), we will see that the deviation from normality persists. 
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for measurement error. We leave the details to the original article, but effectively, Delaigle’s 
method is a kernel smoother that makes an adjustment for the sampling error. The result of 
Delaigle’s method is a density estimate on a set of grid points; four of the distributions are shown 
in Figure 1. We can then estimate the standard deviation or quantiles of the distribution 
numerically. 

4. Results 

 Before delving into our primary findings on fade-out, it is worth noting that when we 
utilize the Jacob et al. (2010) methodology of estimating teacher persistence (see Appendix A), 
we obtain estimates of teacher fade-out that are comparable to the original Jacob et al. estimates 
and far smaller than those we cover in the discussion that follows. In addition, it is useful to have 
some context for how to think about the substantive size of the following estimates of the 
importance of variation in teacher effects. One such standard of comparison is that the 
URM/non-URM achievement gap in our data is 0.6 SD. 
 

Table 2 provides our findings on the estimated variation in teacher effects on eighth-
grade math test scores and in particular the distributions for teachers in different grades, which is 
how we assess the persistence/fade-out of teacher effects from grade to grade. In Panel A, we 
give descriptive statistics of our estimated teacher-effect coefficients, reminding the reader that 
these unadjusted estimates are the sum of the true effect and the estimation error. Note that the 
Jarque-Bera statistic rejects normality with a p value equaling 0 to all reported digits.  
 

Panel B of Table 2 provides descriptive statistics of teacher effects corrected for 
measurement error. Two findings are immediately apparent. First, we ask about the effect of 
improving the entire distribution by increasing all value-added scores by 1 SD as in Chetty et al. 
(2014). We do this both for current teachers and for early-year teachers. Consistent with existing 
empirical evidence (e.g., Chetty et al., 2014; Rivkin et al., 2005), our estimates show that a 1 SD 
variation in teacher effectiveness is substantively large.23 As suggested earlier, one metric is the 
difference in test scores between URM and non-URM students on eighth-grade math test scores, 
which is approximately 0.60 SD in our sample.24 Our empirical Bayes estimate is that a 1 SD 
improvement in the effectiveness of a student’s eighth-grade teacher would close half the 
URM/non-URM gap.  

 

 
23 Hanushek and Rivkin (2010) review a variety of studies and find that the average effect of a 1 SD change in 
teacher value-added is about .11 SD of student test score achievement, and Chetty et al. (2014) estimate an effect 
size of .14. Our estimates are larger, ranging from .11 to .34, depending on the grade level of the teacher, but are 
within the range of what has been found in the literature (e.g., Goldhaber et al., 2013; Nye et al., 2004). 
24 This is close to national estimates of this gap. For instance, in 2017, the Black-White gap in eighth-grade math test 
scores on the National Assessment of Educational Progress was about 0.83, and the Hispanic-White gap was 0.61 
(Hansen et al., 2018).  
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In the Introduction, we referenced early work on the importance of teachers that indicated 
that having a good teacher for 5 years would make an enormous difference in student outcomes. 
The results in Table 2 support this early view. If we could arrange for students to have teachers 
with a 1 SD higher level of effectiveness in all five measured grades (adding the effects), we 
would see eighth-grade outcomes improved by 1 SD, which is almost twice the URM/non-URM 
gap. In traditional value-added estimates, questions arise as to whether the results are due in part 
to the sorting of students. This issue matters for some of our results (see discussion of robustness 
in Section 5). However, when we add across grades, the issue of sorting across the five grades is 
less critical. Effectively, we are dividing up eighth-grade test results among five teachers. If we 
assign part of the score to one teacher, we take those points away from another, leaving the five-
grade total unaffected. 

 
The second immediately apparent result is that while there is estimated fade-out, our 

empirical Bayes estimates show much more persistence than suggested by the prior literature on 
this issue. As we have noted previously, Jacob et al. (2010) find that only about a quarter of 
teacher contributions persist into the following year.25 Similarly, Rothstein (2010) finds that a 
third of a third-grade teacher’s effect persists for 2 years (Rothstein’s Table VIII, first column). 
In contrast, comparing standard deviations, we find that the effects of seventh-grade teachers on 
eighth-grade test outcomes are about 60% as important as those of eighth-grade teachers. And 
even fourth-grade teachers are found to have an impact on eighth-grade tests that is about 32% as 
important as that of eighth-grade teachers. Note, however, that when we allow for a more 
flexible fitting of the teacher contribution (see discussion that follows), the estimate rises from 
32% to 45%. 

 
Given the evidence of non-normality, we also estimate the distribution of teacher effects 

corrected for measurement error using Delaigle’s nonparametric method.26 Delaigle-adjusted 
estimates are notably leptokurtic, more so in earlier grades. This plays a role in results reported 
in the remainder of this section. All the reported standard deviations are modestly larger. The 
increase is particularly noticeable for fourth-grade teachers, raising the estimated ratio of fourth- 
to eighth-grade standard deviation to 45%. 

 
Next, we ask what the effect would be on long-term outcomes of replacing teachers 

below the 5th percentile of value-added with teachers with median value-added (the thought 
experiment posed in Hanushek, 2009). Formally, this asks the value of 𝐹𝐹−1(0.5) −
E�𝜏𝜏�𝜏𝜏 < 𝐹𝐹−1(0.05)�, where 𝐹𝐹(⋅) is the cumulative distribution function of teacher effects. We 
extend the experiment to also consider the loss from teachers in the upper tail of the effectiveness 

 
25 We replicate the technique of Jacob et al. (2010) using our data in the Appendix. 
26 Delaigle’s method gives density estimates 𝑝𝑝𝑖𝑖 on a grid at points 𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛. We estimate the first moment of 
the distribution as 𝜇𝜇 = ∑ 𝑥𝑥𝑖𝑖 �

𝑝𝑝𝑖𝑖
∑ 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1

�𝑛𝑛
𝑖𝑖=1 . We estimate the kth central moment as 𝜇𝜇𝑘𝑘 = ∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇)𝑘𝑘 � 𝑝𝑝𝑖𝑖

∑ 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1

�𝑛𝑛
𝑖𝑖=1 . 
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distribution leaving a school and being replaced by a median teacher. Results are provided in 
Table 3. Looking first at the empirical Bayes estimates, we find, in line with Hanushek’s 
findings, that the effect of replacing a teacher in the tail with a median teacher is large.27 The 
effect of changing an eighth-grade teacher is a little larger than the observed gap in test scores 
between URM and non-URM students. The effect of changing early-year teachers is also large—
about a third the effect of eighth-grade teachers for changing a fourth-grade teacher and half the 
effect for a fifth-grade teacher. 

 
Table 3 presents analogous results using the Delaigle estimates. Given the high estimated 

kurtosis, it is not surprising that the results of replacing a teacher in the tail is larger than it 
appears in the empirical Bayes estimates. Moreover, the nonparametric estimates offer greater 
flexibility in allowing upper versus lower tail behavior to differ. The estimates of replacing a 
weak teacher with an average teacher are notably larger than the empirical Bayes estimates. 
Interestingly, the Delaigle results are quite different in the upper and lower tails. These estimates 
suggest that in eighth grade, replacing a teacher below the 5th percentile is more important than 
retaining a teacher above the 95th percentile, whereas the fourth-grade results go in the opposite 
direction. 

 
Our results show that although there is teacher fade-out, the extent of fade-out is much 

smaller than what has been described in the earlier literature. This is useful to know from a 
macro policy perspective, but at ground level, an administrator may be interested in whether a 
specific early-year teacher who is successful in helping students achieve good current-year 
results is also likely to have contributed to those students’ longer run outcomes. To address this 
issue, we repeated our estimates using earlier grades as the outcome variable. In other words, we 
regressed seventh-grade tests on indicators for teachers in Grades 4–7, sixth-grade tests on 
indicators for teachers in Grades 4–6, and so on.  

In Table 4, we provide estimates of the correlations—the latent value-added performance 
over different grade outcomes28—between fourth-grade teachers’ effects estimated on fourth-
grade tests and the same teachers’ effects estimated on later year tests.29 

As is true with standard deviations, correlation coefficients need empirical Bayes 
adjustments for measurement error.  

 

 
27 Estimates for replacements in the lower versus upper tail differ slightly because the mean and median of the 
empirical Bayes shrunken estimates are slightly different. 
28 The estimate of fourth-grade teachers’ effects on multiple-grade tests is based on the same sample of teachers to 
ensure the consistent sampling variability. 
29 To avoid the possibility that the same students contribute to the estimated teacher effects across multiple grades 
(creating a mechanical correlation), we use out-of-sample cohorts to estimate fourth-grade teacher effects on fourth-
grade student outcomes. Specifically, we use the fourth-grade cohorts of students to which teachers are assigned in 
the 2015–16 to 2018–19 school years to estimate the effects on fourth-grade student tests, since the main results are 
based on cohorts from 2006–07 to 2014–15. 
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Equation (8) shows how we adjust the correlation by removing the noise estimates of 
performance/measurement error in this case, 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜏𝜏𝑗𝑗44
0 , 𝜏𝜏𝑗𝑗4𝑔𝑔

0 ) =  
𝑐𝑐𝑐𝑐𝑐𝑐(𝜏̂𝜏𝑗𝑗44 , 𝜏̂𝜏𝑗𝑗4𝑔𝑔)

 �𝑣𝑣𝑣𝑣𝑣𝑣� 𝜏̂𝜏𝑗𝑗44� −
1
𝑛𝑛∑𝜎𝜎�𝑗𝑗44

2 �𝑣𝑣𝑣𝑣𝑣𝑣� 𝜏̂𝜏𝑗𝑗4𝑔𝑔� −
1
𝑛𝑛∑𝜎𝜎�𝑗𝑗4g

2
 

 

(8) 

 
where 𝜏̂𝜏𝑗𝑗44 is the estimate of fourth-grade teachers’ effects on the fourth-grade test, 𝜏̂𝜏𝑗𝑗4𝑔𝑔  is the 
estimated effects on gth-grade test, and 𝜎𝜎 is the standard errors of estimated effects for each. 
Consistent with the aforementioned earlier research on teacher fade-out, we see significant 
diminishment of estimated teacher effects as students move from grade to grade; indeed, by sixth 
grade, the correlation between teachers’ impact on fourth-grade tests and their impact on sixth-
grade tests is very close to 0.   

5. Robustness Checks 

We do three different types of robustness checks. The first is designed to assess the 
degree to which our approach to estimating value-added yields different estimates of teacher 
effectiveness than more traditional ways of estimating a teacher’s contribution to student tests. 
The second is to check how sensitive our estimates of the distribution of teacher effects (and the 
correction for sampling error) are to the empirical Bayes approach defined in Equation 7. Finally, 
we assess the extent to which the sorting of students into different teacher classrooms, based on 
both observables and unobserved ability, may influence our findings on teacher fade-out. 

 
Most value-added estimates are made by regressing current-year test scores on lagged test 

scores, control variables, and teacher indicators. Our estimation method is different, although not 
without precedent of closely related methods (Rothstein, 2010). A natural question arises: How 
different are the value-added estimates derived from our stacking teacher indicators across 
grades (Equation (6)) from those derived based on traditional year-to-year estimates of teacher 
contributions to student tests (Equation (9))? 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖−1𝛽𝛽1 + 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝛽𝛽2 + 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝜏𝜏𝑗𝑗𝑉𝑉𝑉𝑉 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 (9) 

 
We assess this difference by correlating the effects from the two models and adjusting for 
sampling error, as described in Equation 8.  
 
 The correlations between these two different measures of value-added are provided in 
Table 5. In the case of eighth-grade teachers, both value-added estimates are based on the same 
student test outcomes, so it is not surprising that the adjusted correlations are quite high (more 
than 0.90). Interestingly, the correlation between a teacher’s initial effects and the effects on 
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eighth-grade tests, while lower, are between 0.47 and 0.78, depending on the grades of 
comparison with eighth.30 This finding suggests, consistent with the discussion in Section 2, that 
while some of the contributions that teachers make toward student learning are picked up by the 
test at the end of the grade in which they teach, teachers also have broader impacts on learning 
that contribute to later-grade (Grade 8) achievement. These contributions may well be in the 
form of math concepts that are not covered by specific grade tests or broader contributions to 
student learning. Recent evidence (Gershenson, 2016; Jackson, 2018; Kraft, 2019; Liu & Loeb, 
2019), for instance, finds that teachers do make important contributions to various non-test 
student behaviors (e.g., attendance) that are not highly correlated with their effects on own-grade 
student test scores but may be quite important for longer term academic achievement. 
 

As reported in Table 2, the estimates of the sampling-adjusted distribution of the teacher 
effects yields similar results whether we use a standard empirical Bayes adjustment or the 
Delaigle approach. But there are several other means by which research has recovered the 
estimated teacher effect. In particular, the permanent component of teacher quality can be 
recovered from the correlations of value-added estimates across years. As Kane and Staiger 
(2008) point out, assuming that the permanent component of value-added is constant across 
years, it is possible to recover the variance of teacher effects using Equation 8. In particular, the 
correlation between adjacent years of value-added is the covariance across years over the 
adjusted (for sampling error) standard deviation of the variance.31 We obtain the sum of residuals 
and Grade g’s teacher effects from the value-added model and then average the total of both 
within a school year and create a lagged variable of this result to calculate the covariance 
between Year t and Year t–1 for a teacher. In our estimation, for example, fourth grade, the 
residuals, and the fourth-grade teacher effect are calculated from Equation 6 by subtracting all 
the predicted values except the fourth-grade teacher effect from eighth-grade student scores. 
Thus, we obtained a variable of the sum of fourth-grade teacher effects and residuals. We take 
the square root of this value as the standard deviation of teacher effects in a particular grade.  

 
In addition, we follow the Koedel et al. (2015) method to measure the overall R-squared 

(unadjusted) increase in the model with and without the inclusion of teacher indicators for each 
grade. This measurement reflects the incremental proportion of the total variance explained by 
the addition of teacher indicators.32 We first calculate the R-squared of the full model (i.e., 
Equation 6 with all teacher-grade indicators), and then we omit the indicators for the teachers in 

 
30 These correlations are somewhat higher than those reported by Rothstein (2010), who presents similar evidence 
over a shorter grade span. 
31 Specifically, to obtain the adjusted standard deviation of the value-added estimates, we calculate the covariance of 
gth-grade value-added estimates at Years t and t–1 in a teacher j: �𝑐𝑐𝑐𝑐𝑐𝑐(𝜏̂𝜏𝑉𝑉𝑉𝑉,𝑗𝑗𝑗𝑗𝑔𝑔 , 𝜏̂𝜏𝑉𝑉𝑉𝑉,𝑗𝑗𝑗𝑗−1𝑔𝑔) . The denominator is the 

adjusted standard deviation of our estimates: �𝑣𝑣𝑣𝑣𝑣𝑣� 𝜏̂𝜏𝑗𝑗𝑔𝑔� −
1
𝑛𝑛
∑𝜎𝜎𝚥𝚥𝑔𝑔�

2. 
32 It is a lower bound estimate of the contribution of Grade g teachers to explain eighth-grade student test scores, 
since the assignment of students to Grade g teachers may be correlated with their assignment to teachers in other 
grades that are included in the model. 



 
 

16 

a particular grade.33 The difference between the full-model R-squared value and the model 
omitting the teacher indicators in Grade g is the measure of the proportion of the total variance 
explained by the teachers in Grade g. We take the square root of this value as the standard 
deviation of teacher value-added in that grade. 

 
In Table 6, we report the estimated effect size of a 1 SD change in teacher value-added 

on eighth-grade test scores for each grade level of teachers, using the different methodologies 
described earlier. The first row simply replicates the empirical Bayes estimates (for sampling 
error) from Panel B of Table 2. The second row is the Delaigle estimates. Row 3 provides the 
estimates using the Kane and Staiger (2008) method, and Row 4 the square root of the increase 
of R-squared values between the full model and each grade’s model using Koedel et al. (2015). 
Note that the estimates from each of these methods provide similar effect sizes of a 1 SD change 
in teacher value-added in each grade on eighth-grade student test achievement. 
 

Finally, all estimates of value-added are imperfect, if only because, as noted previously, 
test-based value-added estimates only capture a slice of what teachers contribute to student 
achievement. A general acknowledgement of imperfection notwithstanding, there is one critique 
we think particularly relevant. Rothstein (2010) argues that value-added estimates may be biased 
due to the sorting of students into teacher classrooms based on unobserved attributes correlated 
with student achievement. We conducted a Monte Carlo experiment (described further on) to see 
the extent to which the sorting of students into teacher classrooms might bias our findings. 
Indeed, we do find evidence that the magnitude of the effect of early-grade teachers on later 
grade test achievement is influenced by the nature of student-teacher sorting, but we argue that 
the likely direction of the bias is to make our estimates of the importance of early-grade teachers 
conservative. The direction of bias hinges on the following question: Are students who are high 
performing based on unobserved factors more likely to be assigned to high-value-added teachers, 
or do low-performing students get the better teachers? While the latter might be preferable from 
an equity point of view, we strongly suspect that, due to the influence of parents and other social 
factors, the former case is more likely. Indeed, investigation of the distribution of observable 
teacher attributes across students tends to find that traditionally disadvantaged students (e.g., 
high-poverty students and URMs) are more likely to be assigned to less credentialed and 
experienced teachers, as well as teachers with lower value-added (Goldhaber et al., 2018; 
Isenberg et al., 2016; Mansfield, 2015; Sass et al., 2010). 

Our Monte Carlo is simple but also designed to roughly follow the data structure in the 
state of Washington. We assume that students are only assigned to teachers in two grades (“early 
grade” and “late grade”), that teachers are observed in multiple school years, and that the number 
of years in which teachers are observed can vary (each teacher, on average, is observed two to 

 
33 For example, for a fourth-grade teacher, we calculate the R-squared of the model without the fourth-grade teacher 
indicator in Equation 6 and then take the difference between the full-model R-squared and this R-squared as the 
proportion of variance explained by fourth-grade teachers.  
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three times). Further, we assume that 40 students are assigned to each teacher-year track; that 
both early, Grade t, and late, Grade t+1, teachers have the same number of tracks; and that there 
are a total of nine student cohorts and 200 teacher-year tracks in each grade in the simulation. 
This results in a total of 8,000 student observations.34 

 
 The baseline test achievement for each student i, 𝑦𝑦𝑖𝑖0, is drawn from a standardized 
normal distribution, and we also assume that teachers’ value-added, 𝜎𝜎𝑡𝑡𝑡𝑡,𝑔𝑔, in early and late 
grades is normally distributed with mean 0 and a standard deviation of 0.15. We then assign 
students to early-grade teachers based on a sorting index 𝑆𝑆𝑖𝑖𝑖𝑖, which is equal to the sum of the 
baseline test score  𝑦𝑦𝑖𝑖0 and an idiosyncratic shock (to represent the fact that students may be 
grouped by test performance but are not assigned to teachers based on test scores alone), 𝜔𝜔𝑆𝑆.35 
Specifically, students are assigned to 𝑇𝑇𝑡𝑡 groups in each grade, where 𝑇𝑇𝑡𝑡 is the total number of 
teachers. There are three ways that students are assigned to teachers: (1) randomly, where the T 
groups of students are randomly distributed among the T teachers in each grade; (2) strong 
positive sorting, where the group of students with the highest average sorting index is assigned to 
the teacher with the highest value-added and so on; and (3) strong negative sorting, where the 
group of students with the lowest average sorting index is assigned to the teacher with the 
highest value-added and so on.  
 

Early-grade student scores are generated after we assign early-grade teachers. This 
process contains three components: baseline test score with fade-out; teacher value-added of 
early grade; and a shock, as shown in Equation (10), 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛾𝛾𝑦𝑦𝑖𝑖0 + 𝜏𝜏𝑗𝑗𝑗𝑗 + 𝜔𝜔𝑡𝑡 (10) 

 
  

where 𝛾𝛾 is the parameter of persistence/fade-out (assumed to be 0.8), 𝑦𝑦𝑖𝑖𝑖𝑖 is the scores of the early 
grade, 𝜏𝜏𝑗𝑗𝑗𝑗 is the true teacher effectiveness in the early grade, and 𝜔𝜔 represents the student shock. 
This shock has normal distribution with mean 0 and a standard deviation of 1 − 𝛾𝛾2 − 𝜎𝜎𝑡𝑡𝑡𝑡,𝑡𝑡

2 for 
the sake of scaling to a unit variance. Late-grade teachers are assigned using the same 
mechanism, with 𝑆𝑆𝑖𝑖𝑖𝑖+1 and early-grade student scores 𝑦𝑦𝑖𝑖𝑖𝑖. Then, we generate late-grade scores 
𝑦𝑦𝑖𝑖𝑖𝑖+1 based on the same logic.  
 

We obtained the simulated student-teacher samples with the three different sorting 
mechanisms. Early- and late-grade teacher effectiveness, 𝜏̂𝜏𝑗𝑗𝑔𝑔,𝑔𝑔, where g is either t or t+1, are 
estimated by regressing late-grade student outcomes 𝑦𝑦𝑖𝑖𝑖𝑖+1 on both early- and late-grade teacher 

 
34 The sample size in the Monte Carlo is much smaller than in the real data in order to limit computation time. 
35 The idiosyncratic shock 𝜔𝜔𝑆𝑆 is generated from a normal distribution with mean 0 and standardized deviation 5 to 
generate enough randomness. 
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indicators 𝐼𝐼𝑗𝑗𝑔𝑔 and baseline test scores 𝑦𝑦0𝑖𝑖. We obtained the teacher estimates and standard errors 
based on Equation (11) (which parallels Equation 6):  

𝑦𝑦𝑖𝑖𝑖𝑖+1 = � 𝜏̂𝜏𝑗𝑗𝑡𝑡+1,𝑡𝑡+1𝐼𝐼𝑗𝑗𝑡𝑡+1
𝑗𝑗𝑡𝑡+1∈𝐽𝐽𝑡𝑡+1

+ � 𝜏̂𝜏𝑗𝑗𝑡𝑡,𝑡𝑡𝐼𝐼𝑗𝑗𝑡𝑡
𝑗𝑗𝑡𝑡∈𝐽𝐽𝑡𝑡

+ 𝑦𝑦0𝑖𝑖 (11) 

 
Finally, we correct the standard deviation of estimated teacher effectiveness in Grade g 

by removing the sampling error.36  
 

Table 7 reports the results of the Monte Carlo (recall that, by construction, the true 
distribution of teacher value-added in each grade is 0.15). Each panel of the table shows the 
estimated distribution (1 SD) of raw (i.e., not shrunken) teacher value-added (Column 1), the 
estimated distribution of shrunken estimates (Column 2), and the correlation between the 
shrunken estimates and the true teacher effects (Column 3). Panel A shows the findings for when 
students are randomly assigned to teachers, Panel B contains the findings with negative sorting, 
and Panel C displays those with positive sorting (again, this is the issue originally raised by 
Rothstein, 2010). 

 
 What is most relevant for interpreting our main results is what the simulation suggests 
about the ratio of early- to late-grade teacher standard deviations. Based on the true teacher 
value-added, this should be .8 (given the assumption of a .8 coefficient on the base-year test 
score in the data-generating process).  
 
 Panel A, in which student groupings are randomly assigned to teachers, shows the ratio of 
early- to late-grade teacher distributions of close to .8 for raw value-added and .645 for shrunken 
estimates of value-added. The shrunken estimates understate the true ratio due to overshrinkage 
associated with the teacher effects being imprecisely measured (Boyd et al., 2008).37 
 
 Panel B provides the estimates with negative sorting of students to teachers; again, we do 
not believe this is likely. In this case, both the raw and shrunken ratios of early- to late-grade 
teachers are overstated, by as much as 50% in the case of the shrunken values. 
 
 Panel C provides the findings for the concern about positive matching, raised by 
Rothstein (2010). Here, both the raw and shrunken ratios of early- to late-grade teachers are 

 
36 The adjusted standard deviation of our estimates is �𝑣𝑣𝑣𝑣𝑣𝑣� 𝜏̂𝜏𝑗𝑗𝑔𝑔� −

1
𝑛𝑛
∑𝜎𝜎𝚥𝚥𝑔𝑔�

2, where 𝜎𝜎𝚥𝚥𝑔𝑔�  is the estimated standard 

errors on teacher effectiveness. 
37 Increasing the number of students assigned to each classroom substantially improves the precision of the teacher 
value-added estimates, such that the shrunken parameters for early- and late-grade teachers converge to the true 
distributions of .12 and .15. 
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substantially understated; hence, we believe that our estimates of the true effects of early-grade 
teachers on eighth-grade student achievement (in Table 2) are conservative. 
 
6. Conclusions 

We partition eighth-grade test outcomes into components due to assignment to a 
particular eighth-grade teacher, to teachers in earlier years, to nonteacher factors, and to a 
random error. Our first conclusion is that whether a student is assigned to a particularly effective 
early teacher or not has an effect that is about half as large as the effect of being assigned to a 
particularly effective eighth-grade teacher. Thus, while there is some fade-out, a substantial 
portion of the impact of having a good early-year teacher continues much longer. 

 
Our second conclusion is that the overall effect of having a good teacher is notable. 

Thinking of the Hanushek (2009) experiment, replacing the worst performing 5% of teachers 
with average teachers in Grades 4–8 would raise overall achievement by 2.5 SD. An important 
related finding is that the assumption of normality of the teacher value-added distribution masks 
the import of focusing on the tails of the distribution. This finding is particularly true for the 
most effective teachers, as the Delaigle estimates show that the effects of teachers at the upper 
end of the value-added distribution are even larger than those at the bottom. It implies that 
policymakers might wish to focus more attention on retaining the best teachers than dismissing 
the most ineffective. 

 
At the same time, our results suggest a practical difficulty for administrators when 

thinking about retaining/replacing early-year teachers. We show that there is a large difference 
across early-year teachers in their contributions to later year outcomes. But administrators would 
not generally wish to wait until a current fourth-grade teacher’s students took tests 4 years later 
to take a positive or negative action.  

 
Perhaps a useful summary is that the findings of the earlier literature that teachers are 

incredibly important for student outcomes is sustained. There is, as an intervening literature 
suggests, some fade-out of teacher effects. But the fade-out is smaller than generally thought, 
and the effects of early-grade teachers are quite important. 
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Tables and Figures 
 
 

Figure 1. Nonparametric Density of Teacher Effectiveness as Measured on Eighth-Grade 
Tests 
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Figure 2. The Iceberg Problem and Assessing Teacher Contributions to Knowledge 
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Figure 3. Example of Connected Teachers in Grades 4–8 
 

 

  

Student ID 4 5 6 7 8
1 A H N R W
2 A H N R W
3 A I N R W
4 B H N R W
5 B I N S W
6 B I N S W
7 C H N S W
8 C I N S W
9 C I N S W

10 D J N S W
11 D J O T W
12 D J O T W
13 E K P U X
14 E K P U X
15 E L P U X
16 F L P U X
17 F L P U X
18 F L P U X
19 G M Q V Y
20 G M Q V Z

Grade Connected 
Group

1

2

3
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Table 1. Descriptive Statistics 
 

 (1) (2) (3) 

  

Largest 
Connected 

Group 

Other 
Connected 

Groups 
Difference 

URM student 0.251 0.315 -0.063*** 
Female 0.497 0.494 0.003 
Asian/Pacific Islander 0.109 0.132 –0.023*** 
Third-grade FRL status 0.395 0.494 –0.099*** 
Third-grade special education 0.098 0.124 –0.026*** 
Third-grade English learner 0.090 0.118 –0.028*** 
Third-grade gifted 0.039 0.033 0.005*** 
Third-grade math test 0.065 –0.101 

0.167*** 
 (0.978) (1.025) 
Third-grade ELA test 0.068 –0.106 

0.174*** 
 (0.976) (1.028) 
Eighth-grade math test 0.236 0.043 

0.193*** 
 (0.931) (0.977) 
    
Number of unique students 173,858 112,116  

 
Note. Column 1 is calculated based on the largest connected group that is obtained from partitioning the dataset using 
Weeks & Williams (1964) algorithm. Column 2 is the summary statistics on the data excluding the largest connected 
group. In Panel A, we summarized student time-invariant variables, including those of underrepresented minority 
(URM) status, gender, and Asian/Pacific Islander indicator. Also, we have baseline controls for students including 
third-grade math and English language arts (ELA) scores (standardized to mean 0 and unit standard deviation prior to 
partitioning data into connected components), third-grade special education status, third-grade English learner status, 
and third-grade gifted indicator. In Panel B, we reported eighth-grade student math outcomes for both the largest 
connected group and other groups. The numbers of unique students and teachers in Column 1 are counted within the 
largest connected group. The number of unique students and teachers in Column 2 are those students and teachers 
who are not included in the largest connected group. Column 3 shows the differences between the largest connected 
group and others. Values are obtained from t test; all except gender are significantly different. Missing teachers are 
identified as missing in each grade and are not included/summarized in this table. FRL = free or reduced-priced lunch. 
 
* p < 0.05  
** p < .01  
*** p < 0.001 
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Table 2. Estimates of Teacher Effects on Eighth-Grade Test Scores 
 

 Grade 
 

4 5 6 7 8 Panel A: Raw estimates 
SD  0.319 0.346 0.354 0.349 0.447 
Skewness 0.043 –0.327 0.178 0.004 –0.206 
Kurtosis 6.144 6.670 4.331 2.862 1.964 
Jarque-Bera p value 0 0 0 0 0 
Number of teachers 6,629 5,340 3,427 2,898 3,060 
Average number of students per 

teacher in sample 18.3 18.3 28.0 45.5 56.6 
Panel B: Adjusted estimates           
Empirical Bayes SD 0.111 0.176 0.188 0.209 0.337 
Empirical Bayes shrunken kurtosis 0.585 0.573 1.454 1.081 0.177 
Delaigle-adjusted SD 0.162 0.190 0.192 0.225 0.360 
Delaigle-adjusted Kurtosis 37.1 52.5 21.8 6.2 5.6 

  
Note. The table includes descriptive statistics for coefficient indicator variables for teachers. 

 
Table 3. Estimates of Replacing Teachers in the Tail of the Effectiveness Distribution on 
Eighth-Grade Test Scores 

 

 Grade 
 

4 5 6 7 8  
Replace below 5th percentile 
with median teacher, empirical 
Bayes estimates 0.229 0.362 0.386 0.421 0.685 
Replace above 95th percentile 
with median teacher, empirical 
Bayes estimates 0.229 0.364 0.389 0.440 0.707 
Replace below 5th percentile 
with median teacher, Delaigle 
estimates 0.294 0.395 0.403 0.526 0.970 
Replace above 95th percentile 
with median teacher, Delaigle 
estimates 0.406 0.342 0.420 0.523 0.566 
 
Note. See article text for calculation method.  
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Table 4. Adjusted Correlations of Fourth-Grade Teacher Effects with Different Outcome 
Grades 

Outcome Correlation 
Fifth-grade test   0.22 
Sixth-grade test   0.07 
Seventh-grade test   0.01 
Eighth-grade test –0.10 

 
Note. The outcome test is estimated by Equation 6, with the number of teacher indicators varying according to the 
outcome grade in question (e.g., the sixth-grade test has indicators for fourth-, fifth-, and sixth-grade teachers). 
Column 2 shows the correlation between fourth-grade teachers’ effect on fourth-grade test scores and fourth-grade 
teachers’ effect on each outcome grade test score. Fourth-grade teachers’ effect on fourth-grade test scores are 
estimated using out-of-sample cohorts from 2016 to 2019. This correlation has been adjusted by using the empirical 
Bayes adjustment as described in Equation 8. 
 
 
Table 5. Correlations of Our Value-Added Estimates with Traditional Estimates 
Grade Correlation 
4 0.49 
5 0.47 
6 0.52 
7 0.78 
8 0.94 

 
Note. Value-added estimates are based on the largest connected group sample that includes student cohorts from 2007 
to 2019. Column (1) of the table shows the grade in which traditional value-added models (defined by Equation 9) has 
been estimated and correlated with the teacher-grade indicators models described in Equation 8. Column 2 shows the 
adjusted correlation that removed sample errors in the estimated standard deviation that is the square root of 
covariances in mean residuals across a classroom for each teacher. Each classroom is paired with a randomly chosen 
classroom of the same teacher to estimate the covariances. 
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Table 6. Different Methods of Deriving Teacher Effect Size Estimates 

 1 SD change in teacher value-added on student tests 
 Grade 
 4 5 6 7 
Empirical Bayes 0.11 0.18 0.19 0.21 
Delaigle 0.16 0.19 0.19 0.23 
Kane & Staiger 0.14 0.15 0.17 0.21 
Koedel et al. 0.13 0.12 0.11 0.14 
 

Note. Column 1 shows the adjusted empirical Bayes standard deviations. Column 2 has the adjusted empirical Bayes 
standard deviations with clustered standard errors on eighth-grade classroom level. Column 3 shows the square roots 
of the covariance of the permanent component of teacher quality in Years t and t–1 using Kane and Staiger (2008). 
Column 4 displays square roots of the increase of the R-squared difference with and without the inclusion of a 
particular-grade teacher indicator using Koedel et al. (2015). 



 
 

31 

Table 7. Monte Carlo Results on Teacher Value-Added Distribution 
 

Panel A: No Sorting of Students to Teachers 
 1 SD Raw Value-

added 
1 SD Shrunken 
Value-added 

Correlation of True 
Value-added and 

Shrunken  
Early-grade teachers .138 .091 .852 
Late-grade teachers .174 .141 .849 
Ratio of early to late SD .793 .645  

Panel B: Negative Sorting of Students to Teachers 
Early-grade teachers .135 .085 .841 
Late-grade teachers .116 .056 .774 
Ratio of early to late SD 1.164 1.518  

Panel C: Positive Sorting of Students to Teachers 
Early-grade teachers .135 .085 .843 
Late-grade teachers .212 .184 .938 
Ratio of early to late SD .637 .462  
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Appendix A 

Replication of Jacob et al. (2010) 2SLS Persistence Model 

 
 Here we describe our replication of the Jacob et al. (2010) measure of teacher persistence, 
using the largest sample of connected teachers. Specifically, we first obtain the ordinary least 
squares estimate of teacher persistence from a regression model that includes student 
demographics (𝑋𝑋𝑖𝑖) and school year variables: 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜𝑌𝑌𝑖𝑖𝑖𝑖 𝑔𝑔−1 + 𝛽𝛽2𝑋𝑋𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖 
in which students’ achievement 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑌𝑌𝑖𝑖𝑖𝑖 𝑔𝑔−1 represent the test scores of students i matched 
with Teacher j at Grade g and Grade g–1, respectively. We construct similar estimate for 𝛽𝛽𝑉𝑉𝑉𝑉 and 
𝛽𝛽𝐿𝐿𝐿𝐿 from these two stage least squares regressions: 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛼𝛼𝑖𝑖 + 𝛽𝛽𝐿𝐿𝐿𝐿𝑌𝑌𝑖𝑖𝑖𝑖 𝑔𝑔−1 + 𝛽𝛽2𝑋𝑋𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖−1 =  𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑧𝑧𝑌𝑌𝑖𝑖𝑖𝑖 𝑔𝑔−2 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖−1 

where 𝑌𝑌𝑖𝑖𝑖𝑖 𝑔𝑔−2 is the twice-lagged student achievement and 𝛽𝛽𝐿𝐿𝐿𝐿 is the persistence of long-run 
knowledge. And we use teacher j’s effectiveness 𝜏𝜏𝑖𝑖𝑖𝑖 𝑔𝑔−1, i.e. value-added estimates, from Grade 
g–1 as an instrumental variable for the achievement of Grade g–1, we then acquire estimate of 
𝛽𝛽𝑉𝑉𝑉𝑉 from a regression model: 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑉𝑉𝑉𝑉𝑌𝑌𝑖𝑖𝑖𝑖 𝑔𝑔−1 + 𝛽𝛽2𝑋𝑋𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖−1 =  𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑣𝑣𝜏𝜏𝑖𝑖𝑖𝑖 𝑔𝑔−1 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖−1 

 
We also extend 1-year persistence model to 2-year persistence model according to Jacob 

et al. (2010) by taking one more lag on student achievements and using teacher value-added as 
instrumental variable from one more year earlier. These three measurements of persistence are 
interpreted, respectively, as the fraction of variance in total knowledge attributable to long-run 
knowledge, 𝛽𝛽𝐿𝐿𝐿𝐿, and the fraction of long-run knowledge related to teacher effects, 𝛽𝛽𝑉𝑉𝑉𝑉. 

 
In Table A1, we report the 1- and 2-year persistence estimates on math achievement, i.e., 

𝛽𝛽𝑉𝑉𝑉𝑉 using the procedure from Jacob et al. (2010) model on Grades 4–6 and 4–8.38 The Jacob et 
al. estimates of 1- and 2-year persistence are presented in Panel A.39 
 Our lagged score and value-added instrumental variable approaches for Grades 4–6 is 
reported in Panel B. These estimates of long-run persistence with lagged score instrument for 
both 1- and 2-year persistence are very similar to Jacob et al. (2010) estimates; the reported 
Jacob et al. 1-year value-added persistence of knowledge is 0.27 in North Carolina in Grades 4–6 
(p. 929). Our 1-year estimate with value-added instrument on the largest connected sample of 

 
38 We report the results separately for these grades to be consistent with the Jacob et al. (2010) sample (Grades 4–6) 
and to show that the results do not vary significantly for the later grades in our full sample. 
39 We also reproduce findings using the largest connected sample and a different approach advanced by Kinsler 
(2012). Our estimates of persistence using Kinsler’s approach is 0.51, which is somewhat higher than that reported 
in Kinsler (0.375). 
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teachers in Grades 4–6 is slightly smaller, 0.18, and about 0.07 in 2-year value-added persistence 
estimates. In Panel C, we extend the persistence estimates to Grades 4–8 using the same 
specification. We have slightly higher long-run persistence estimates using lagged score IV 
approaches. The estimated 1-year value-added persistence of teachers in Grades 4–8 is similar, 
around 0.26. The 2-year value-added persistence of teacher is smaller, 0.08.  
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Table A1. Estimates of the Persistence of Math Achievement 

 One Year Two Year 
  

    

Panel A: North Carolina Grades 4–6 (Jacob et al., 2010)     
Prior-year achievement coefficient 0.95*** 0.27*** 0.87*** 0.16*** 

 (0.001) (0.01) (0.001) (0.008) 
     
Panel B: Washington State Grades 4–6     
Prior-year achievement coefficient 0.96*** 0.18*** 0.89*** 0.07*** 

 (0.004) (0.021) (0.007) (0.027) 
     
Panel C: Washington State Grades 4–8     
Prior-year achievement coefficient 0.97*** 0.26*** 0.91*** 0.08*** 

 (0.002) (0.015) (0.003) (0.016) 
* p < 0.1  
** p < 0.05  
*** p < 0.01      

 
Note. Results shown here are based on the largest connected sample with value-added estimates. For teacher value-
added persistence, we estimate the value-added of a student’s teacher from Jacob et al. (2010) and then estimate the 
persistence of teacher value-added using equations in Appendix A. Also, the long-run persistence is estimated 
similarly using lagged test scores as instrumental variables. We applied the Jacob et al. method on North Carolina 
from 2007 to 2017 and obtained similar results comparing to their estimates. End-of-grade student achievement is 
standardized within grade and school year. We only keep those students who can be matched with a single teacher in 
a single grade year using the preferred matching protocol. Standard errors are obtained from 2SLS ordinary least 
squares.  
 

𝛽̂𝛽𝐿𝐿𝐿𝐿  𝛽̂𝛽𝑉𝑉𝑉𝑉 𝛽̂𝛽𝐿𝐿𝐿𝐿  𝛽̂𝛽𝑉𝑉𝑉𝑉 
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